FORMAL LANGUAGES AND AUTOMATA

THEORY
LECTURE NOTES

B.TECH II YEAR - Il SEM (R20)
(2021-22 A.Y)

DEPARTMENT OF
COMPUTER SCIENCE AND ENGINEERING

MALLA REDDY COLLEGE OF ENGINEERING &
TECHNOLOGY

(Autonomous Institution — UGC, Govt. of India)

Recognized under 2(f) and 12 (B) of UGC ACT 1956
(Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC — ‘A’ Grade - ISO 9001:2015 Certified)
Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad — 500100, Telangana State, India

UNIT -1

After going through this chapter, you should be abie to unaerstana :

o Alphabets, Strings and Languages
o Mathematical Induction

o Finite Automata

o Equivalence of NFAand DFA

s NFAwith ¢ - moves

14 ALPHABETS, STRINGS & LANGUAGES
Alphabet
Analphabet, denoted by . , is a finite and nonempty set of symbols.

Example:
. If g is an alphabet containing all the 26 characters used in English language, then

s is finite and nonempty set,and £ = {a, b,c, ..., 2}.
2. X ={0,]} isanalphabet.
3, ¥ =1{1,2,3,.} isnotanalphabetbecauseitisinfinite.
4, 7 ={} isnotanalphabet because it isempty.

—

String
A string is a finite sequence of symbols from some alphabel.
Example :

"xyz" isastring over an alphabet I = {a,b,c, ..., 2}. Theempty stringor null string is
denoted by «.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 6

Length of a string

The length of astring is the number of symbols in that string, If isa string then its length
is denoted by | w|.

Example :

l. w=abed , then length of w is | w|= 4
2. n=010 isastring,then|n|=3
3. e istheempty stringand has length zero.

The set of strings of length K (X > 1)

Let ¥ beanalphabetand ¥ = {a, b} , thenall strings oflength K (K > 1) isdenoted by y.
£X ={w:wisastring of length K, K > 1}

Example:

l. Z={ab}, then
2! ={a,b},
2? = {aa,ab, ba,bb},
%’ = {aaa,aab,aba,abb baa, bab,bba,bbb)
|Z'= 2 = 2" (Number of strings of length one),
| 2%|= 4 = 2* (Number of strings of length two), and
| 2% = 8 = 2* (Number of strings of length three)
2. §={0,,2} ,then § = {00,01,02,11, 10,12,22,20,21} ,and | §?| = 9 = 3*

Concatenation of strings

If w, and w, are two strings then concatenation of w, with w, is a string and it is denoted by
ww, . In other words, we can say that w, is followed by w, and | w,w,| = | w| + | w,).

FORMAL LANGUAGES AND AUTOMATA THEORY Page 7

Prefix of a string

A string obtained by removing zero or more trailing symbols is called prefix. For example, ifa
Sting w = abe ,then a,ab,abc areprefixesof w.

Suffix of a string

A string obtained by removing zero or more leading symbols is called suffix. For example, if a
string w = abe ,then c,bc abe aresuffixesof w. o
Astring a is aproper prefix or suffix of a string v ifandonlyif a # w.

Substrings of a string

A string obtained by removing a prefix and a suffix from string v is called substring of w . For
example, ifastring w = ahe 4then p is asubstring of . Every prefix and suffix of string w is
asubstring of w, but not évery substring of yy isaprefix orsuffix of w . Foreverystring w,both
wand ¢ are prefixes, suffixes, and substrings of .

Substring of w =w ~(one prefix)~(one suffix).

Language

A Language L over 3, is a subset of 5*, i. e, it is a collection of strings over the
alphabet 5. ¢ ,and {} arelanguages. The language ¢ is undefined as similar to infinityand
{¢} issimilar to anempty box i.. a language without any string.

Example:

1. L, ={01,0011,000111 } isalanguage overalphabet {0,1}
2. L, ={€,0,00,000,.} isalanguageoveralphabet {0}
3. L, ={0""2" ;n 21} isalanguage,

Kleene Closure of a Language

Let 7, bealanguage over some alphabet y: . Then Kleene closure of 1 is denoted by 7 * and
itis also known as reflexive transitive closme,anddeﬁnedasfollows

FORMAL LANGUAGES AND AUTOMATA THEORY Page 8

L* = {Set of all words over L}
= {word of length zero, words of length one, words of length two,}

=UEH=r~uvl'vlu..

K=0
Example:

l. I ={a,b} andalanguage 1 over y.Then
F=1rvllvlu..
L' =g
I' ={a,b},
I? = {aa,ab,ba,bb} and soon.
So, L*={e,a,b,aa,ab,ba,bb..}
2. §={0}, then $* = {€,0,00,000 ,0000 ,00000 ,....}

Positive Closure

If 5, isanalphabet then positive closure of 5 isdenoted by s+ and defined as follows :

5t = 3" - {g = {Set of all words over I excluding empty string €}
Example :
if £ = (0}, then £* = {0,00,000,0000 ,00000 ,...}

1.2 MATHEMATICAL INDUCTION

Based on general observations specific truths can be identified by reasoning, This principle is
called mathematical induction. The proof by mathematical induction involves four steps.

Basis : Thisisthe starting point foraninduction. Here, prove that the result is true for somen=0 or 1.
Induction Hypothesis : Here, assume that the result is true forn =k .
Induction step : Prove that the result is true for somen=k+1.

Proof of induction step : Actual proof.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 9

1.3 FINITE AUTOMATA (FA)

A finite automata consists of a finite memory called input tape, a finite - nonempty set of states, an
inputalphabet, aread - only head , a transition function which defines the change of configuration,
an initial state, and a finite - non empty set of final states.

A model of finite automata is shown in figure 1.1.

¥ § te— Input Tape

[*— Reading Head

Finite Control

FIGURE 1.1 : Model of Finite Automata

The input tape is divided into cells and each cell contains one symbol from the input alphabet.
The symbol ' is used at the leftmost cell and the symbol '$'is used at the rightmost cell to

indicate the beginning and end of the input tape. The head reads one symbol on the input tape
and finite control controls the next configuration. The head can read cither from left - to - right or
right - to -left one cell at a time. The head can't write and can't move backward. So, FA can't
remember its previous read symbols, This is the major limitation of FA.

Deterministic Finite Automata (DFA)

A deterministic finite automata M can be described by 5-tuple (Q, £, 3, ¢, F) , where

1. Qis finite, nonempty set of states,

2.y isaninputalphabet,

3. & istransition function whichmaps Q x£ - Q i.e. the head reads a symbol in its present
state and moves into next state.

4. q, €Q,knownasinitial state

5. FecQ,knownas setof final states.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 10

Non - deterministic Finite Automata (NFA)

A non - deterministic finite automata M can be described by 5 - tuple (Q, £, 8, q,, F), where

I Qisfinite, nonempty set of states,

2.y isaninputalphabet,

3. § istransition function whichmaps Q x - 2° i.e., the head readsa symbol inits present
state and moves into the set of next state (s) . 22 is power setof Q,

4. q, €Q,known asinitial state , and

5. FcQ,knownas set of final states.

The difference between a DFA and a NFA is only in transition function. In DFA, transition
function maps on at most one state and in NFA transition function maps on at least one state for
avalid input symbol.

States of the FA

FA has following states :

1. Initial state : Initial state is an unique state ; from this state the processing starts.

2. Final states : These are special states in which if execution of input string is ended then
execution is known as successful otherwise unsuccessful.

3. Non-final states : All states except final states are known as non - final states.

4, Hang-states : These are the states, which are not included into Q, and after reaching these
states FA sits in idle situation. These have no outgoing edge. These states are generaily

denoted by ¢ . For example, consider a FA shown in figure1.2.

FIGURE 1.2 : Finite Automata

g, istheinitial state, q,, g, are final states, and ¢ is the hang state.

FORMAL LANGUAGES AND AUTOMATA THEORY

Page 11

Notations used for representing FA

We represent a FA by describing all the five - terms (Q, Z, §, q,, F). By using diagram to

represent FA make things much clearer and readable. We use following notations for representing
the FA:

1. Theinitial state is represented by a state within a circle and an arrow entering into circle as
shown below :
(Initial tate g,)

2. Final state is represented by final state within double circles :

|
(Final state ¢,)

3. Thehang state is represented by the symbol '¢" withina circle as follows :

4, Other states are represented by the state name within a circle.
5. Adirected edge with label shows the transition (or move). Suppose p is the present state
and q i the next state on input - symbol ‘a', then this is represented by

6. A directed edge with more than one label shows the transitions (or moves). Suppose p is the
present state and q is the next state oninput - symbols 'a," or 'a," or...or ‘a," thenthisis

represented by (P4t (7)

Transition Functions
We have two types of transition functions depending on the number of arguments.

Transition Function

Direct Indirect
(Represented by §) (Represented by §')

Direct transition Function (5)

When the input is a symbol, transition function is known as direct transition function.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 12

Example : §(p,a) = q (Where p s present state and q is the next state),
Itis also known as one step transition.

Indirect transition function (5')
When the input is a string, then transition function is known as indirect transition function.
Example : 6'(p,w)=¢q, where p is the present state and q is the next state after | w |

transitions. It is also known as one step or more than one step transition.
Properties of Transition Functions

1. Ifé(p,a)=q,then § (p, ax)=35(q x) andif &' (p, X) = q,then &' (p, xa) =8'(q, a)
2. Fortwostringsxandy; 6(p,xy) =6(8(p,x),y) ,and 8'(p,xy) =6'(6'(p.x),»)
Example :1. ADFA M = ({q0,9:,9:,4,},{0,1},8,90.{¢,}) isshowninfigurel.3.

FIGURE 1.3 : Deterministic finite automata

Where § 1s defined as follows :
0 l
> G g Q;
q, G Q
4, G %
q G G

2. ANFA M, =({‘10s‘1n‘12:‘11},{0s1

——

,6,44.9 ,}) isshownin figurel 4.

0,1

()

FIGURE 1.4 : Non - deterministic finite automata

FORMAL LANGUAGES AND AUTOMATA THEORY Page 13

3. Transition sequence for the string "011011" is as follows :

One execution ends in hang state ¢ , second ends in non - final state ¢, , and third ends in final
state g, hencestring "011011" is accepted by third execution.

Difference between DFA and NFA
Strictly speaking the difference between DFA and NFA lies only in the definition of §. Using this
difference some more points can be derived and can be written as shown :

DFA NFA
1. The DFAis 5 - tuple or quintuple The NFA is same as DFA except in the
M =(0,%,8,q,,F) where definition of §.Here, § is defined as follows :
Q s set of finite states §:0x(XUe) tosubset of o0
s, is set of input alphabets
8:0xZto O

q, istheinitial state
Fc QO issetof final states

2. There can be zero or one transition | There can be zero, one or more transitions
from a state on an input symbol from a state on an input symbol

3, No e- transitions existi.e., there < - transitions can exist i, €., without any input
should not be any fransition ora there can be transition from one state to
transition if existitshould beonan | another state.

input symbol

4. Difficult to construct Easy to construct

FORMAL LANGUAGES AND AUTOMATA THEORY

Page 14

The NFA accepts strings a, ab, abbb etc. by using ¢ path between ¢, and ¢, we canmove
from g, stateto g, without reading any input symbol. To accept ab first we are moving from ¢,

{0 ¢, reading aand we canjump o g, state without reading any symbol there we acceptband
we are ending with final state so it is accepted.

Equivalence of NFA with - Transitions and NFA without ¢ - Transitions

Theorem :Ifthe language L isaccepted by an NFAwith e- transitions, then the language L,
is accepted by an NFAwithout - transitions.

Proof : Consider an NFA N'with - transitions where N =(Q, Z, 8, ¢, F)
Constructan NFA N, without ¢ transitions N, =(Q,, Z, §,, ¢,)
where Q=0 and

pol FY {g,) if e~ closure(q,) contains a stateof F
C|F otherwise

and 8, (g,0) is 8 (g,q) forqinQandain 3.

Consideranon - empty string . To show by induction || that 5, (g,, ©) = & (4,,0)
For @ =¢, the above statement is not true. Because
0,(40.€)={q0} »
while 8(qy.€)=¢€ ~closwre (q,)

Basis :
Start indugtion with string length one .
e, |ol=1

Then wisa.symbola, and &, (g,a)=3(o,a) by definitionof 3,.

Induction : lo|>1
Let o = xy forsymbolain 3.

Then 8,(40,%7)=0,(8,(q0:%),¥)

FORMAL LANGUAGES AND AUTOMATA THEORY Page 15

Calculation of < -closure :

&-closure of state (-closure (q)) defined as it is a set of all vertices p such that there is a
path from qtop labelled e (including itself).

Example :
Consider the NFA with ¢ - moves

e~ closure (g,)= {4, 9, 2 4, }
e~ closure (g)={ g,, 95, ¢, }

e - closure (¢,)= {g,, ¢, }

e - closure (g,)={g,}

Procedure to convert NFA with - moves to NFA without - moves

Let N =(Q, £,5,4,, F) isaNFAwith ¢ movesthenthereexists N'=(0,e,5 ,q,, F"') without
e Moves

1. Firstfind e - closure of all states in the design.

2. Calculate extended transition function using following conversion formulae.
0 §(g x)=e- closure §(3 (g, &), x))
M &(q,e)=e - closure(q)

3. Fisasetofall states whose ¢ closure contains a final state in F.

Example 1 : Convert following NFAwith e moves to NFAwithout & moves.

_@ a @ & ﬁ

Solution : Transition table for given NFAis

§ a b
>4, g, 0
q, b ¢ g,

¢ % ¢

FORMAL LANGUAGES AND AUTOMATA THEORY Page 16

(i) Finding < closure :
e—closure (g,) = {g,}
e closure (¢,)={4q,, ¢.}
e - closure (¢,) = {¢,}

(i) Extended Transition function :
5 a b
>4, {QI ’QZ} ¢

] {9}
¢ {g:}

8 (qo’ a) =& —closure (6 (3(% ,e),a))

= e~—closure (8 (e —closure (q,) , a))

= e—closure (8 (g,, a))

il

e—closure (q,)

={41,‘I2}

8 (gy» b) ¢ ~closure (5(5(qq-€)b))
=e— closure(d(- closure (q,), b))
=g~ closure(d (q,, b))
=€~ closure($)

=6

8 (g,»a) =€g— closure(ﬁ(s (g, €), a))
=&~ closure(d (- closure(q,), a))
=e~— closure(d ((4,59,), a))
=e— closure(d (gq,, a) V(q,, a))
=e— closure ()

=9

FORMAL LANGUAGES AND AUTOMATA THEORY Page 17

8 (4,, b) = e~ closure (5 (8 (q,, €), b))
= €— closure (8 (€— closure(q,), b))
= €~ closure (3 ((g,,9,), b))
= €— closure (5 (q,,b) U (g,,b))
= €~ closure (g,)

={q,}

8 (q,,a) = g€~ closure (8(5(:1,, €), a))
= €~ closure (8(€-closure(q,), a))
=€ —closure (6(q,,a))
= €— closure (¢)
=¢
8 (g, b) = e~ closure (5 (8 (g,,), b))
= €~ closure (& (e-closure (q,), b))
= €~ closure (8 (q,, b))
= €— closure (q,)

={g,}

(iii) Final states are g,, ¢,, because
€— closure (g,) contains final state
€ - closure (q,) contains final state

(iv) NFA without € movesis

FORMAL LANGUAGES AND AUTOMATA THEORY

Page 18

2.1 FINITE STATE MACHINES (FSMs)

A finite state machine is similar to findte automata having additional capability of outputs,

A model of finite state machine s shown in below figure

Finitocontrl |

Input reading e ™~ Qubput
head .~ “\Jproducing head

Tnput tape -Ouf;ﬁt-.tape
FIGURE : ModelofFSM
2.1.1 Description of FSM
A finite state machine is represented by 6- tuple (0,3 B8,8,4,q,) , Whete
[Qisfinite and non - empty set of states,

2. vI8 hlput alphabet,
3. A isoutputalphabet,

FORMAL LANGUAGES AND AUTOMATA THEORY Page 19

4. § istransition function which maps present state and input symbol on to the next state or
OxE—-0,

5. 3 isthe output function, and

6. g¢,€Q,istheinitial state .

2.1.2 Representation of FSM

We represent a finite state machine in two ways ; one is by transition table, and another is by
transition diagram . In transition diagram , edges are labeled with Input/ output.

Suppose , in transition table the entry is defined by a function F, so for input 4, and state g,
F(g,,a) = (8(g,, a) , Ag;,a,)) (where § istransition function, 3, is output function.)

Example 1 : Consider a finite state machine, which changes 1's into 0's and 0's into 1's
(1's complement) as shown in below figure .

Transition diagram :

01

10

FIGURE : Finite state machine

Transition table :

Inputs
0 1
Present Next State (NS) | Output Next State (NS) Output
State(PS)
q q ! q 0

FORMAL LANGUAGES AND AUTOMATA THEORY Page 20

Example 2 : Consider the finite state machine shown in below figure, which outputs the 2's
complement of input binary number reading from least significant bit (LSB).

(0%) (o)
@ 11
T

FIGURE : Finite State machine

Suppose, input is 10100, What is the output ?
Solution : The finite state machine reads the input from right side (LSB).

Transition sequence for input 10100 :

Inputs —

OanCen O OO0
Outputs ——
So, the output is 01100.

2.2 MOORE MACHINE

If the output of finite state machine is dependent on present state only, then this model of
finite state machine is known as Moore machine,

A Moore machine is represented by 6-tuple (Q,£,A, 8, 4,q,) , where

Q is finite and non-empty set of states,

¥, isinput alphabet,

A isoutput alphabet,

8 is transition function which maps present state and input symbol on to the next state or
0x% -0,

A is the output function which maps 0 — A, (Present state — Output), and

6 g, Q,istheinitial state .

S

If Z (1), q (¢) are output and present state respectively at time f then
Z() = r(g ().
Forinput ¢ (null string), Z () = 4 (initial state)

FORMAL LANGUAGES AND AUTOMATA THEORY Page 21

Consider three LSBs of Input
L0000 ()
001 (X)
..010 (X)
011 (X)
100 (X)

101
110
LX)

2
H

O e O 6 g O

Transition diagram :

101/4 @)
oy ®
| @)

xjc

FIGURE : Moore Machine

24 EQUIVALENCE OF MOORE AND MEALY MACHINES

We can construct equivalent Mealy machine for a Moore machine and vice-versa. Let 1, and
M, beequivalent Moore and Mealy machines respectively. The two outputs 7, (w) and 7, (w)
are produced by the machines M, and M, respectively for input string w . Then the length of

T, (w) is one greater than the length of 7,(w), e.

5,00] = |00+

The additional length is due to the output produced by initial state of Moore machine. Let output
symbol x is the additional output produced by the initial state of Moore machine, then -
Ti(w)=xTy(w). |

FORMAL LANGUAGES AND AUTOMATA THEORY Page 22

It means that if we neglect the one initial output produced by the initial state of Moore machine,
then outputs produced by both machines are equivalent. The additional output is produced by
the initial state of (for input <) Moore machine without reading the input.

Conversion of Moore Machine to Mealy Machine
Theorem :If i/, =(Q,2,A,6,4,4,) isaMoore machine then there exists a Mealy machine
M, equivalentto M. |
Proof : We will discuss proof in two steps.
Step 1 : Construction of equivalent Mealy machine A, ,and
Step 2 : Outputs produced by both machines are equivalent.
Step 1(Construction of equivalent Mealy machine M,)
Let M, =(Q,%,A,8,4',q,) whereall terms 0, %, A, 8, ¢, are same as for Moore machine and
A is defined as following :
M(g,a) = (8 (g,a) forallg e Qand 4 ¢ 3

The first output produced by initial state of Moore machine is neglected and transition
sequences remain unchanged.
Step 2 : If x is the output symbol produced by initial state of Moore machine M, and
T(w), T,(w) are outputs produced by Moore machine A, and equivalent Mealy machine M,
respectively forinput string w, then

Ti(w)y=xT,(w)
Or Output of Moore machine = x| | Output of Mealy machine
(The notation | | represents concatenation).

If'we delete the output symbol.x from 7, (w) and supposeitis 7} (w) which s equivalentto

the output of Mealy machine. So we have,
T () = Tw)
Hence, Moore machine A, and Mealy machine M, are equivalent.

Example 1 : Constructa Mealy machine equivalent to Moore machine A4, given in following
transition table.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 23

3. A remains unchanged,
4. ' isdefined asfollows :
8" ([g,b].a) = [8(g,a), % (g,a)], where § and), are transition function and output
function of Mealy machine,
5.) isthe output function of equivalent Moore machine which is dependent on present state
only and defined as follows :
A ((g.0) = b
6. g, isthe initial state and defined as [g,,5,], where g, is the initial state of Mealy machine and
b, is any arbitrary symbol selected from output alphabet A .
Step 2 : Qutputs of Mealy and Moore Machines
Suppose, Mealy machine M, enters states g, g;, ¢s,...9, on input a,,a,, as,....a, and
produces outputs b, b,, b, ... b,, then M, entersthestates [g,, 4,1, [g;, 51 (25, 53]+ s [B,
and produces outputs &,, 5, b,, ... b, asdiscussed in Step 1. Hence, outputs produced by both
machines are equivalent.
Therefore, Mealy machine 4, and Moore machine M, are equivalent.

Example 1 : Consider the Mealy machine shown in below figure. Construct an equivalent
Moore machine. :

FIGURE : Mealy Machine
Solution : Let M,=(QLAd,44,) is a given Mealy machine and
M,=(0"2,48"1"q,") betheequivalent Moore machine,
where
L @ < {lg-n)[90. b [91- 7] M1, ¥) [g2.mL [0, ¥1} (Since, 0" € O x A)
2. T ={0,1}

FORMAL LANGUAGES AND AUTOMATA THEORY Page 24

3.
4. g,'=[gy,y], where g, is theinitial state and » is the output symbol of Mealy machine,
5. .

A = {n,y},
§' isdefinedas following :

For initial state(q,, y] :
8'(1905¥1,0) =[6(20,0),4(¢0,0)] = [4;,7]
8190, ¥11) = 1840120101 = 142, 7]
For state [¢,,n] :
8 ([g1, 71, 0) = 13 (g1, 0), & (g1, O] = [g1, 7]
8'(Lg1>n 1) = [8(q1), Mq1D1=[92]

For state [g,, 1]
& ([g5, 71, 0) = [8 (g5, 0), (g2, O} = [91, 7]
&' ([%rn]) 1) =[8 (st 1),A (QZ’ D] = 4, vl

For state [g;, y] :
8 (3, 1 0) = [8 (91, 0 2 (91, O] = 1gy, 5]
5 (19> ¥1, D) = B (1. D M (90, D] = [2]
For state {g,,] :
8 (142> ¥1, 0) = [8(g2, 0, 2 (2:0)] = {01,]
8 ([g2, ¥, 1) = [8 (g2 Dy A (42 D] = [9]

(Note : We have considered only those states, which are reachable from initial state)

6. 3 isdefined as follows:

Alao:y1=y

A lgy,n] = n
Mlgy,nl=n
Mgyl =y
Mgyl =y

FORMAL LANGUAGES AND AUTOMATA THEORY

Page 25

2.5 EQUIVALENCE OF FSMs

Two finite machines are said to be equivalent if and only if every input sequence yields identical
output sequence.

Exampile :
Consider the FSM M, shown in figure (2) and FSM M, shown in figure (b).

Qs
My

Figure (b)

Are these two FSMs equivalent ?
Solution :

We check this. Consider the input strings and corresponding outputs as given following :

input string Output by ¥, Output by ¥,
(1 o1 00 00

) 010 001 001

(3) 0101 0611 0011
(4) 1000 - 0111 0111
(5) 10001 01111 01111

Now, we come to this conclusion that for each input sequence, outputs produced by both machines
are identical. So, these machines are equivalent. In other words, both machines do the same

task. But, M, hastwo statesand 3/, has four states. So, some states of M, are doing the same

FORMAL LANGUAGES AND AUTOMATA THEORY Page 26

task i. e., producing identical outputs on certain input. Such states are known as equivalent states
and require extra resources when implemented.
Thus, our goal is to find the simplest and equivalent FSM with minimum number of states.

2.51 FSM Minimization

We minimize a FSM using the following method, which finds the equivalent states, and mexges
these into one state and finally construct the equivalent FSM by minimizing the number of states.

Method : Initially we assume that all pairs (g,,¢,) over states are non - equivalent states
Step 1 : Construct the transition table.

Step 2 : Repeat for each pair of non - equivalent states (go.¢,) *
(@ Do g, and g, produce same output ?
(6) Do g, and g, reach the same states for eachinput a € 27
(¢c) If answers of (a) and (b) are YES, then ¢, and ¢,are equivalent states and
merge these two states into one state [g,,q,] and replace the all occurrences of
g, and g, by [q,.q,] and mark these equivalent states.

Step 3 : Check the all - present states, if any redundancy is found, remove that.

Step 4 : Exit.
Example 1 : Consider the following transition table for FSM. Construct minimum state FSM.
Inputs
: 0 1
Present Next State Next State
State(PS) (NS) {(NS) Output
g, 90 a 0
4, 9, 4, 1
g; 4, % 1
9 9, 4 1

FORMAL LANGUAGES AND AUTOMATA THEORY Page 27

After going through this chapter, you should be able to understand :

Identity Rules

Constructing FAfor a given REs
Conversion of FAto REs

Pumping Lemma of Regular sets
Closure properties of Regular sets

Regular sets and Regular Expressions :
{ Unit-11 J

3.1 REGULAR SETS

A special class of sets of words over §, called regular sefs, is defined recursively as follows,

(Klezne proves that any set recognized by an FSM is regular. Conversely, every regular set can
berecognized by some FSM)

1. Every finite set of words over 3 (including ¢, the empty set) is aregular sel,

2, It Aand B are regularsets over S, then 4 p and AB are also regular.

3. IfSisaregularsetoverS, thensoisits closure S*,

4, Nosetisregularunlessitis obtained bya finite number of applicationsof definitions (1)to (3).

i.¢. the class of regular sets over § is the smallest class containing all finite sefs of words over §
and closed under union, concatenation and star operation.

Examples:

) Let £=1{a,b}then the set of strings that contain both odd number of ' and b's is

regularset.
i) LetZ={ thenlheselufbtrmgﬂ{ﬂ 00,000 ,....} isaregularset.

ii) Let £ = {0,1} then the setof strings {01 10 } isaregular sef.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 28

3.2 REGULAR EXPRESSIONS

The languages accepted by FA are regular languages and these languages are easily described
by simple expressions called regular expressions. We have some algebraic notations to represent
the regular expressions.

Regular expressions ave means to represent ceriain sets of strings in some algebraic
manner and regular expressions describe the language accepled by FA.

If 5 isanalphabet then regular expression(s) over this can be described by following rules,
. Anysymbol from Zge and ¢ are regular expressions.
If », and », are two regular expressions then union of these represented as r, W r, 01
+ », isalso aregular expression
If # and r, are two regular expressions then concatenation of these represented as ryr; is
also aregular expression.
. The Kleene closure of a regular expression r isdenoted by » * isalsoaregular expression.
If r is aregular expression then (r) isalso aregular expression.

The regular expressions obtained by applying rules 1 to 5 once or more than once are also
regular expressions.

Examples :

(1) If £ = {a,b},then

(a) aisamgﬂarexprmsion {Usingrule 1)
(b} bisarcgularexpression (Usingrule 1)

(€) o + b isaregularexpression (Using rule 2)
(d) p+* isaregular expression (Using rule 4)
(€) gp isarcgular expression (Using rule 3)
() ab + b+ isaregular expression (Using rule 6)
(2) Find regular expression for the following

(a) A language consists of all the words over {a, b} endingin p.

(b) A language consists of all the words over {a, b} endingin pp.

(¢) A language consists of all the words over {a, b} starting with gand ending in b.

(d) A language consists ofall the words over {a, b} having pp asasubstring.

{¢) A language consists of all the words over {a, b} ending in aab.

Solution :Let E={a,b}, and

Allthe wordsover £ = {e, a, b, aa, bb, ab, ba, aaa, =S *or(a+ D) *or(awb)*

FORMAL LANGUAGES AND AUTOMATA THEORY

=({ga,b,aq.bb,...} ¥

= {e a, b, aa, bb, ab, ba, aca, bbb, abb, baa, aabh, ...}
= {All the words over {a, 5} }

={a+h*

So, (@*+b*)*=(a+H)*

3.3 IDENTITIES FOR REs
The two regular expressions P and Q are equivalent (denoted as P = Q) if and only if P

represents the same set of strings as Q does. For showing this equivalence of regular expressions
we need to show some identities of regular expressions.

Let P, Q and R are repular expressions then the identity rules are as given below
k eR=Re=R

2 ez e isnull string

3 (#) =€ ¢ is empty string.

- oR=R§=4

5, o+=R=R

6. R+R=R

1

8

9

1

RR*=R*R=R'
(Ry=F
. c+RR =R
0. ; (P+(0)R=PR+0OR
i1. (P+Q) =(P'Q)=(P'+QY)
12. R'(e+R)={e+R)R =R’
13. (R+e) =R’
14. c+R' =R’
15, (PQ) P=P(QPY
16, RR+R=RR

3.31 Equivalence of two REs

Let us see one important theorem named Arden's Theorem which helps in checking the
equivalence of two regular expressions.

FORMAL LANGUAGES AND AUTOMATA THEORY

Arden's Theorem : Let P and Q be the two regular expressions over the input set 3; . The
regular expression R is given as

R=0+RP
Which has a unique solution as & = 0P

Proof : Let, P and (are two regular expressions over the input sfring 3. .
IfP does not contain e then there exists R such that
R=Q+RP skl

We will replace R by QP* in equation 1.
Consider R. H. S. of equation 1.

=0+0P'P

=((e +P"P)

=QP' v etR'R=R
Ths R=0P
is proved, To prove that R = QP"is a unique solution, we will now replace L.H.5. of equation 1
by Q +RP. Then it becomes

Q+RP

But again R can be replaced by Q + RP.
- Q+RP=Q+(Q+RP)P

=+ 0P+ RF
Againreplace R by Q +RP.

=0+ 0P +(Q+RP)}F’

=0 +0P+QP + RP’
Thus if we go on replacing R by Q + RP then we get,

O+RP=0+0P+0P' +....+0P' + RP"

=e+P+ P + P+ RP

From equation 1,
R=0(s+P+ P+

Where iz0
Consider equation 2,

R=0(e+P+ P ¢ ..+ Py RE"
e

4 R=0P +RP"
Let wbe astring of lengthi.

FORMAL LANGUAGES AND AUTOMATA THEORY

=£e,0,00,111,111,01,10,........}
= { ,anycombination of 0's, any combination of I's, any combination of
0and] }
Henee, L.H. §.=R. H.5.is proved.

3.4 RELATIONSHIP BETWEEN FA AND RE

There is a close relationship between a finite automata and the regular expression we can show
thisrelation in below figure.

i |
Can be Regular Can be

Converted 7 converted to

A

NFA with
= Moves

Canbe Canbe
converted converted to
INEA without

& MOoves i

FIGURE : Relationship between FA and regular expression
The above figure shows that it is convenient to convert the regular expression to NFAwith e
maoves. Let us see the theorem based on this conversion,

3.5 CONSTRUCTING FAFOR A GIVEN REs
Theoram :lf » bearegularexpression then there exists @ NFAwI ¢ - moves, which accepts L(r).
Proof : First we will discuss the construction of NFA 7 with € -moves for regular expression
r and then we prove that L{M) = L(r).

Let » be the regular expression over the alphabet 3.

Construction of NFA with - - moves
Case1:

® r=29

FORMAL LANGUAGES AND AUTOMATA THEORY

NFA M = ({5, 1, { 18,5, {f}) asshownin Figurel (a)
(No path from initial state s o
reach the final state)
Figure 1 (a)

M r=¢

NFA M = (s}, { 1.8, 4, {s}) as shown in Figure | (b)

() (The initial state 5 is the final state)

Figure 1 (b)
(i) » = g,foralla e%,
NFA M = ({5, /1, 2,8, 5 {/})
(One path is there from initial state s

to reach the final state fwithlabel a.)
Figure 1 (c)

Case2: |[r|z1

Let » and r; be the tworegular expressions over £, £, and N, and ¥, aretwoNFAfor
r, and #, respectively as shownin Figure 2 (a).

e N @ + L(N,) =7,

Figure 2 (a) NFAfor regular expression », and r,

FORMAL LANGUAGES AND AUTOMATA THEORY

Now let us compute for final state, which denotes the regularexpression.
r} will be computed, because there are total 2 states and final state is g, whose start state is g, .
= N 2 o)
=Dey(e)+0
=0+0
v} = which isa final regular expression.

3.6.1 Arden's Method for Converting DFA to RE

As we have seen the Arden's theorem is useful for checking the equivalence of two regular
expressions, we will also see its use in conversion of DFA to RE.

Following algorithm is used to build the . e. from given DFA.

1. Let g, betheinitial state.
2. Thereareq,, ¢;.4::44:-dx number of states. The final state may be some g, where j<n
3. Let o, represents the transition from g, fo g,.
4. Caleulate g such that
g, =04,
If g isastart state
g, =a;q,+€

5. Similarly compute the final state which ultimately gives the regular expressionr.

Example 1 : Construct RE for the given DFA.

Solution :

Since there is only one state in the finite automata let us solve for g, only.
o = o0+ golt €
g =go(0+1)+e

FORMAL LANGUAGES AND AUTOMATA THEORY

Example 3 : Construct RE for the DFA given in below figure.

Solution : Letus see the equations
gy = ¢l +g,0+e
gy = g0
gy =yl
gy =q0+¢;1+g,(0+1)

Letus solve g, first,
g, = g1 +4,0+¢€
gy = 4501 + gyl 0+
go = qp(01+ 100+ & R=Q+RP
g, =€ {01+10)* — QP * where
gy =(01+10)* R=g,0=¢e,P=(01+10)

Thus the regular expression will be
r=(01+10)*

Since g, is a final state, we are interested in g, only.

Example 4 : Find out the regular expression from given DFA.

FORMAL LANGUAGES AND AUTOMATA THEORY

Example 8 ; Showthat the language L ={a' b"|i>01} Isnotreguiar.

Solution : The set of strings accepted by language L s,
L = {abb, aabbbb, aaabbbbbb, agaabbbbbbbb...}
Applying Pumping lemma for any of the strings above.
Take the string abb.
It is ofthe form wvw.
Where, |uv [i|viz]
To find i such that w'we L
Take i=2 here, then
w'w =a(bblb
= abbh
Hence uv'w=abbb & L

Since abbb is not present in the strings of L.
». Lis not regular.

Example 9 : Show that L = {0°|n is a perfect square } is not regular.

Solution :
Step 1 : Let Lisregular by Pumping lemma. Let n be number of states of FA accepting L.
Step2: Let:-o¢" then|zf=nz2,
Therefore, we can write z=uvw ; Where [wisn)vz1.
Take any string of the language L={ 00, 0000, 000000..... }
Take 0000 as string, hereu= 0, v=0, w=00to findi such that w'we L.
Take i =2 here, then
wv'w= 0(0Y° 00
= (0000

This string 00000 is not present in strings of language L. 50 uv'wg L.
-, Itisacontradiction.

3.9 PROPERTIES OF REGULAR SETS

Regular sets are closed under following properties.
1. Union
2. Concatenation

FORMAL LANGUAGES AND AUTOMATA THEORY

Kleene Closure
{Complementation
Transpose
Intersection

Union : If R and R, are two regular sets, then union of these denoted by R, + R, or
R, R, isalsoaregular set.

Proof : Let R and R, be recognized by NFA ~, and ¥, respectively as shown in
Figurel(a)and Figure1(b).

FIGURE 1(b) NFA for regular set &,
We construct a new NFA N based on union of N, and N, asshown in Figure 1 (c)

FIGURE 1(c) NFAfor N, + &,
Now,
L{N) = e L(N)) € + e L{N,) €
=eRje +eR,e
=R, + R,
Since, Nis FA, hence L(N) isaregular set(language). Therefore, R, + R, isaregularset.

FORMAL LANGUAGES AND AUTOMATA THEORY

2. Concatenation : If R and R, are two regular sets, then concatenation of these denoted

by KR, isalso aregular set.
Proof : Let R and R, be recognized by NFA N, and N, respectively as shown in
Figure 2(a) and Figure 2(b).

FIGURE 2{b) MFA for regular set R,
We construct anew NFA N based on concatenation of ¥, and N, as shown in Figure2(c).

FIGURE 2(c) NFA for regular set R R,

Now,
L(N) = Regular setaccepted by N, followed by regular setaccepted by N, = R\R,
Since, L(N) isaregular set, hence R R, is alsoaregular set.

Kleene Closure : If Risaregular set, then Kleene closure of this denoted by R*isalso
aregular set.

Proof: Let R isaccepted by NFA n shown in Figure 3(a).

FIGURE 3(a) NFA for regular set R

FORMAL LANGUAGES AND AUTOMATA THEORY

We construct a new NFA based on NFA N as shown in Figure 3(b).

FIGURE 3({b) NFA for regular expression for &'
MNow,

I{N)={e,R . RR.RRR ..}
=L

Since, L{N) is aregular set, therefore R" is aregular set.

Complement : If 7 is a regular set on some alphabet 3, then complement of g is
denotedby " — R or % isalsoaregular set,

Proof : Let p be accepted by NFA N = (Q,X,8,5,F). It means, L(N)=R.
N is shown in Figure 4(a).

FIGURE 4(a) NFA for regular set R
We construct anew NFA n'based on p asfollows:

(a) Change all final states to non-final states.
(b) Change all non-final states to final states.
N ' is shown in Figure 4(b)

FIGURE 4 (b) NFA

FORMAL LANGUAGES AND AUTOMATA THEORY

Now,

L(N') = {All the words which are not accepted by NFA N}

= { All the rejected words by NFA N}

=X -R

Since, L{N") isaregular set, therefore (Z° — R) is aregular set.

. Transpose :If Risaregular set, then the transpose denoted by g7, isalso aregular set,
Proof : Let g beaccepted by NFA N = (@ ,Z,8,5,F") asshown in Figure 5(a).

FIGURE 5 (a) NFA N for regular set R

If wisawordin g,then transpose (reverse) isdenoted by 7 .
Let w = aja,...a,

Then w™ =a,a,.;...q

[S

We construct anew ¢ based on x using following rules:

(a) Change the all final states into non-final states and merge all these into one state and make it

initial state.
(b) Change initial state to final state.
(c) Reverse the direction of all edges.
A is shown in Figure5 (b)

FIGURE 5(b) NFA N'for regular set g’

FORMAL LANGUAGES AND AUTOMATA THEORY

Let w = a,a,,.,a, beawordin R sthenitis recognized by and

Wt s a,a,_,..a isrecognizedby A» asshown in Figure5 (b)
In general, we say that if a word inR is accepted by p,andthen yv accepts ,,7.

Sinee, L(N") is aregular set containing all w iitmeans, L(N")= R".

Thus, R" isaregular set,

Intersection : if R and R, are two regular sets over 1. then intersection of these
denoted by R, R, isalso aregular set.

Proof : By De Morgan's law for two sets 4 and B over R,
AVB=R*-((R*~-4)U(R*-B))

SO, R, M Ry, =E*—((L* Ry NEF-R,))

Let R; = (Z*-R,) and R, = (Z*-R,)

S0, R; and R, are regular sets as these are complement of R and R,.

Let R, =R, U R,

So, B; isaregular set because it is the union of two regular sets Ry and R,.
Let R, =% *-R,

So, R; isaregular set because it is the complement of. regular set R;.
Therefore, intersection of two regular sets is also regular set.

FORMAL LANGUAGES AND AUTOMATA THEORY

REGULAR GRAMMARS

e

gt it

After going through this chapter, you should be abie to understand :

« Regular Grammar
s Fouivalence between Regular Grammar and FA
s Interconversion

41 REGULAR GRAMMAR

Definition : The grammar G=(V, TP, S }is said to be regular graminar i Fthe grammar is
nightlnearor left inear,
A graminar (s said to be right linear if all the productions are of the form
A—wB andfor A -»w where 4, BV and 4y o7

A grammar G is said to be left Hnear ifall the productions are of the form

Example 1: The grammar

S -y aaB [BbA | ¢

A o aAlb

B - bBlale
isariglt linear grammar. Note that ¢ and siring of termitials can appearon RHS of any production
and ifnon - terminal is presenton R, H. 8 of any production, only one non - tetminal showld be
presentand it has to be the right most symbol on R. H. §,
Example 2:

The grammar

S - Baag | Abb | ¢

A - Aslb

B - Bblale
isaleft linear grammer. Note that & and string of terminals can appear on RHS of any production
and if non - terminal is present on L. H. S of any production, only ome non - terminal should be
present and ithas o be the left most symbolonL. H. 8.

FORMAL LANGUAGES AND AUTOMATA THEORY

Example 3:

Consider the grammar
5 - 8A

A abBib
B - Abla

Inthis grammar, each production iseither left inear orright lineat. But, the grammat is not either
Jeft inear orright incar. Such type of gramunar is called linear grammt. So, a grammmar which hes
at most one tion terminal on the right side of any production withoutrestriction on the position of
this tion - terminal (note the non - terminal can be lefimost or right most) is called linear

PAITHNAL,
Natefimtthe language generated from the regular grammar is called reguler language, So, there

should be some relation between the regular grammar and the FA, sinoe, the language accepted
by FAis also reguler language. So, we can construct a finite aufomaton givena regular gramsmar,

42 FAFROMREGULAR GRAMMAR

Theorem : LetG={V. T, 7,8 be arightlinear grammar, Ther there exists a language L(G)
which is accepted by & FA. 1 &, the language generated from {he regular grammar

is reqular fangusge.

Proof 1LtV = (g, ¢, .. bethe varizbles and the startstate 5=g, Let the productions in
the grammar be :
[/ S 11
¢ = %L

g = X,

4a ¥ Ky

Assume that the language 1G) generated from these productions is w, Corresponding to each
production in the grammer we can have acquivalent transitions in the A toacoept the string w.
After accepling the string v, the FAwill be i the final stat. The procedure to obtain FA from

these productions is given below:

FORMAL LANGUAGES AND AUTOMATA THEORY Page 43
age

Step1: ¢, whichis the start symbol inthe grammaris the start state of FA.

Step 2. Foreach production of the form
q', sy Wy i
the corresponding transition defined will be
$laiwi=q,;
Step 3 : For each production of the form ¢, —» w
the comesponding transition defined will be 8 (g,,) =q, ,where 7, isthe final state,

As the string w e £(G) is also aceepted by FA, by applying the transitions obtained from
stepl through step3, the language is regular. So, the theorem is proved,

Example 1 : Consiructa DFAto accept the language generated by the following grammar

S - 014
4 - 148
B - 0411

Solution :

Note that for each production of the form A - wB, the corresponding transition will be
8(4, w) = B.Als0,, for each production 4 y , We can infroduce the transition 5(4,w) = ¢,
where ¢, isthe final state. The transitions obtained from grammar G is shown using the following

table:
Productions Transitions
§ o DIA 8(S, 0 =4
A - 108 84, 10=8
B w» 0A 88, 0)=4
B 4 U 58, 11) =g,

The FA cotresponding to the transitions obiained is shown below :

FORMAL LANGUAGES AND AUTOMATA THEORY Page 44

M={0, %, 3,q,, 4) where

O={8,4,B. 9,4 Gosdst 5 =401}

g,=5 . A=1{a,}

& is as obtained from the sbove table.
The additional vertices inroduced are g,.4,. 9,

Example 2 : Construct a DFAto accept the language generated by the following grammar .
s —> ad | ¢
A - aAlbB| =
B - bB| ¢

Solution :

Nots that for each production of the form 4 -5 wB, the corresponding transition will be

8(4,w) = B.Also, for each production 4 —» v , We canintroduce the transition 8(A,w} =4,

where ¢, is the final state. The transitions obtained fom grammar G is shown using the following
table:

Transitions
8(8.a)= 4
S is the final state
5(4,a)= A
§(A,b) = B
Aisthe final slate
8(B,by=18
B is the final state.

FORMAL LANGUAGES AND AUTOMATA THEORY

Note : For cach transition of the form: 4 s, make A as the final state,
The FA corresponding to the transitions obtained s shown below

So.the DFA M =((0.%, 8, ¢,, 4) where
Q={8 4.8} ,Z={ab}
@ =S, A=1{S, 4, B}
§isas obtained from the above table.

4.3 REGULAR GRAMMAR FROM FA

Theorem : Let M =(Q,%,5,¢,,4) bea finite automaton. IfL.is the regular language accepted
by FA, then there exists a right linear grammar G ={V, T, P, 8 } so that L= L{G),

Proof : Let M =(0,5.6,4,.4) beafinite agtomata accepting L where
O = {gg. G5y}

={ap.a;,..a,}
Aregulsr grammar G= (V, T, P, 8) canbe constructed where

V :: {qc! qli ""qa}
=X
S=gq,
The productions P from the transitions can be obtained as shown below ;
Step 1 : Foreach transition of the form 8(g,, 2) =¢,
the corresponding production defined will be ¢, — ag,
Step 2: If g e 4 i.e,, if qis the final state in FA, then introduce the production
G

Asthese productions are obtained from the transitions defined for FA, the lanpuage accepted by
FAis also accepted by the grammar,

FORMAL LANGUAGES AND AUTOMATA THEORY

Note : For each transition of the form 4 -3¢, make A asthe ﬁnai state,
The FA corresponding to the transitions obtained is shown below :

So,the DFA M =(Q,3, 8, g,, 4) where
O=1{8. 4,8} ,S={a b}
g =S, A= {8, 4, B}
& 1s as obtained from the above table.

4.3 REGULAR GRAMMAR FROM FA

Theorem :Let i =(0,3,8,4,,4) beafinite automaton, If L is the regular language accepted
by FA, then there exisls aright linear grammar G = (V, T, P, 8) so that L= L(G).

Proof : Let M =(0,2,6,9,.4) beafinite automata accepting L where

O ={Go:1»Tn}
Z={a,a,,...49,}
Aregular grammar G = (V, T, P, $) can be constructed where

Vo { oo s ,...q"}

Ik

S=¢,
The productions P from the transitions can be obtained as shown below :
Step 1 : For each transition of the form 8(g,, @) =¢ :

the correspending production defined will be ¢, = ag,

Step 2: If g € 4 1. e, if g is the finial state in FA, then introduce the production
g >

Asthese productions are obtained from the transitions defined for FA, the language accepted by
FAis also accepted by the grammar,

FORMAL LANGUAGES AND AUTOMATA THEORY Page 47

CONTEXT FREE GRAMMARS

After going through this chapter, you should be able to understand :

Context free grammars

Left most and Rightmost derivation of strings
Derivation Trees

Ambiguity in CFGs

Minimization of CFGs

Normal Forms (CNF & GNF)

Pumping Lemma for CFLs

Enumeration properties of CFLs

5.1 CONTEXT FREE GRAMMARS

A grammar G = (¥, T, P, §) is said to be a CFG if the productions of G are of the form :

A->a,wherea e(VuT)*
The right hand side of a CFG is ot restricted and it may be null or a combination of variables and

terminals. The possible length of right hand sentential form ranges from Oto o ie, 0 < | o | <.

As we know that a CFG has no context neither left nor right. This is why, it is known as
CONTEXT - FREE. Many programming languages have recursive structure that can be
defined by CFG's.

Example 1 : Considerthe grammar G = (¥, T, P, §) having productions :
§ —> aSa | bSh| . Check the productions and find the language generated.

Solution :
Let P :S - aSa (RHSisterminal variable terminal)
P, : § —» bSh (RHSisterminal variable terminal)
B : 8 —» e (RHSisnullstring)
Since, all productions are of the form A4 —» a, where @ e(V U T)* ,hence ¢ isaCFG

FORMAL LANGUAGES AND AUTOMATA THEORY

So, the final grammar to generate the language L= { w|n,(w)=n, (w)} isG=(V,T,P,S)

where

U<
o

={S} ,T={ab}
{ §S>¢€

S— aSh

S— bSa

S§— 88
} S isthe start symbol

5.2 LEFTMOST AND RIGHTMOST DERIVATIONS

Leftmost derivation :

fG=W.T, P, S) isaCFGand w € L(G) then a derivation § 2w is called leftmost
derivation if and only if all steps involved in derivation have lefimost variable replacement only.

Rightmost derivation :

fG=W,T,P,S) isaCFGand w € I(G), thenaderivation § =>w is called rightmost
derivation if and only if all steps involved in derivation have rightmost variable replacement only.

Example 1 : Consider the grammar § — S + S| S * §]a|b. Find lefimost and rightmost

derivations forstring w = g * g + b.

Solution :

Leftmost derivation for v = g*g 4 b

S=L>S‘S
a*s

L
:L:>a*S+S
-.l->a*a+S

=Sa*a+b
i

(Using s » §*5)

(The firstleft hand symbolisa, so using § — a)
(Using § — § + §,inordertoget 7 + b)
(Second symbol from theleftisa, sousing § — a)
(The last symbol from the leflis b, sousing § — 5)

FORMAL LANGUAGES AND AUTOMATA THEORY

Page 49

Rightmost derivation for = g% 44§
52888 (Uings - 505)

=8%5+8 (Since, inthe above sentential form second symbol from the right is * so,

we can not use § = alb, Therefore, weuse § —» § +§)

28*85+b (Using§ -» b)
=28%a+b (Using§ - o)

¥ £
:R}H ﬂ"l‘h (U’Slngs_bﬂ)

Example 2 : ConsideraCFG § — b4|aB, 4 - aS|addia, B -» bS|«BB|b. Find
leftmost and rightmost derivations for v = agahbabbba -
Solution :
Leftmost derivation for - ggahbabbha
S = uB (Using § — gB to generate first symbol of w)
= auBB (Since, second symbol is o, soweuse B -» aBB)
= guaBBR (Since, third symbol is 2,50 Weuse B — aBB)
= gagbBB (Sinice fourth symbol is b, soweuse B -)
= qaabbB (Sinee, fifth symbolis b, sowe use B —» b)
=y aaabbaBB (Since, sixthsymbol is 8, soweuse B — aBR)
= aaabbabB (Since, seventh symbol ish, sawe use B — b)
= aaabbabbS (Since, eighth symbolis b, soweuse B — bS)
= agabbabbbd (Since, ninth symbol is b, sowe use § — hd)
= aaebbabbba (Since, the tenth symbolisa, sousing 4 — a)
Rightmost derivation for y = gughbabbba
§ = qB (Using § - ap to generate first symbol of w)
- qaBB(We need a s the rightmost symbol and second symbol from the left side, so we
use p - aBB)

- gaBhs (Weneedaasrightmost symbol and this is obtained from Aonly, weuse B — 5S)
= agBhbd (Using § — b4)

= agBbba (Using 4 - a)

= ggaBBbba (Weneed bas the fourth symbol from the right)

= aaaBbbba (Using B - &)
= aaabShbba (Using B 18)

FORMAL LANGUAGES AND AUTOMATA THEORY

Figure () Parse tree for w = ab Figure (d) Parse tree for w = ab
So, the given prammar is ambiguous.

541 Removal of Ambiguity

5.4.1.1 Left Recursion

A grammar can be changed from one form to another accepting the same language. Ifa grammar
has left recursive property, it is undesirable and left recursion should be eliminated. The lefi
recursion is defined as follows.

Definition :A grammar G is said to be left recursive if there is some non terminal A such that
4 =* 4. Inotherwords, in the derivation process starting fiom any non - terminal A, ifasentential
form starts with the same non - terminal A, then we say that the grammar is having left recursion.

Elimination of Left Recursion
The lefi recursion in a grammar G can be eliminated as shown below. Consider the A- production

ofthe form A—rde|daglday Aa, BB, | By B
where g's do not start with A. Then the A productions can be replaced by

A5, A A | BA oo By A

A s A e d" |asd'|

Note that «,'s do not start with 4t.

Example 1 : Eliminate left recursion from the following grammar
E— E+T|T
TH>T*FI|F
F -3 (E) |id

FORMAL LANGUAGES AND AUTOMATA THEORY

5.5 MINIMIZATION OF CFGs

As we have seen various languages can effectively be represented by context free grammar. All
the grammars are notalways optimized. That means grammar may consists of some extra symbols
(non - terminals). Having extra symbols unnecessary increases the length of grammar.
Simplification of grammar means reduction of grammar by removing useless symbols. The
properties of reduced grammar are given below :

1. Eachvariable (i.e. non - terminal) and each terminal of G appears in the derivation of some
word in L.

2. There should not be any production as y —» v where X and Y are non - terminals,

3. If ¢ isnotinthe language L then there need not be the production x —e.

We see the reduction of grammar as shown below :

Reduced grammar 1

Removal of Elimination of Removal of
useless symbols & productions unit productions

551 Removal of useless symbols
Definition : A symbol X is useful if there is a derivation of the form
S=' akp ="w

Otherwise, the symbol X is useless. Note that in a derivation, finally we should get string of
terminals and all these symbols must be reachable from the start symbol 8. Those symbols and
productions which are not at all used in the derivation arc useless.

Theorem 5.5.4 :letG=(V, T P, 8) be a CFG We can find an equivalent grammar
G, = (V,.1},P,,5) suchthatforeachAin (F;uT)) thereexists o and £ in (FUT})* and x in
T forwhich § =" ad =" x.

FORMAL LANGUAGES AND AUTOMATA THEORY

P T

8 - a|Bb|Aa ab
A aB ab
B alAa J ab

Theresulting grammar G, =(V,, 7,,F,,S) where

¥, {5,AB}

T {ab}

P, {
S 5 a|BbjaA
A - 4B
B -~ alAa

} 8 isthe start symbol

such that each symbol X in (¥, w 1) hasa derivation ofthe form §=" a¥p =" w.
55.2 Eliminating < - productions

Aproduction of the form 4 - e is undesirable ina CFG unless an empty string is derived from
the start symbol. Suppose, the language generated from a grammar G does not derive any
empty string and the grammar consists of e- productions. Such ¢ - productions can be removed.
An ¢ - production is defined as follows :

Definition1: LetG=(V,T,P, 8)beaCFG A production in P of the form
A= e

iscalledan & - production or NULL production. Afier applying the production the variable Ais
erased. For each Ain V, if there is a derivation of the form

A= e
then A isanullable variable.
Example : Consider the grammar
g ABCa| bD

A - BClb
B bl e

FORMAL LANGUAGES AND AUTOMATA THEORY

Step 2 : Construction of productions P, . Addanon e- productioninPto 7, . Takeall the
combinations of nullable variables in a production, delete subset of nullable variables one by one
and add the resulting productionsto P, .

Productions Resulting productions (7,)

S BAAB S -» BAAB|AAB |BAB|BAA|
A AB|BB|BA|AA|A|B

A 0A2 A - 0A2]02

A ; 2A0 A - 2A0]20

| B AB B > AB|B|A

LB 1B B 1B]1

We can delete the productions of the form A —» A. In P, , the production B-» B canbe
deleted and the final grammar obtained after eliminating ¢ -productions is shown below.

The grammar G, = (V,,T;,A,S) where

v, = {S,A,B,C.D}

7 = {ab,cd}

P, = {S -» BAAB|AAB|BAB |BAA|AB|BB|BA|AA|A|B

A -5 0A2]02|2A0]20
B 5 AB|A|1B|1
} S isthe start symbol

5.5.3 Eliminating unit productions
Consider the production 4 —» 8. The left hand side of the production and right hand side of the
production contains only one variable. Such productions are called umit productions. Formally, a
unit production is defined as follows.
Definition : Let G =(V, T, P, $)beaCFG Any production in G of the form

A—> B
where A, g ey isaunit production,

In any grammar, the unit productions are undesirable. This is because one variable is simply
replaced by another variable.

FORMAL LANGUAGES AND AUTOMATA THEORY

In a CFG, there is no restriction on the right hand side ofa production, The restrictions are

imposed on the right hand side of productions ina CFG resulting in normal forms. The different
normal formsare :

1. Chomsky Normal Form (CNF)
2. Greiback Normal Form (GNF)

5.6.1 Chomsky Normal Form (CNF)

Chomsky normal form can be defined as follows.

Non - terminal —s Non - terminal Non - terminal 1
Non -terminal —» terminal J

The given CFG should be converted in the above format then we can say that the grammar is in
CNF. Before converting the grammar into CNF it should be in reduced form. That means
remove all theuseless symbols, e productions and unit productions from it. Thus this reduced
grammar can be then converted to CNF.

Definition :
LetG= (V. T,P,S)beaCFG The grammar G is said to be in CNF if all productions are
ofthe form '
A BC

A a
where A,Band CeV andaeT.

Note that if a grammar is in CNF, the right hand side of the production should contain two
symbols or one symbol. [fthere are two symbols on the right hand side thosetwo symbols must
be non - terminals and if there is only one symbol, that symbol must be a terminal.

Theorem 5.6.1 : Let G=(V, T, P, §) be a CFG which generates context free language
without <. We can find an equivalent context free grammar G, =(V.T',H ,5) in CNF such that

L(G)=L(G,) i.e.,all productionsin G, areofthe form

A -3 BC
or
A —

FORMAL LANGUAGES AND AUTOMATA THEORY

Thus, from (7), (8) and (9), the resultant grammar becomes ;
SV, S|V, |alb
i
Vi
Vi — 8V,
Ve — 8V,
V,-1
F, =]
Now, in the resultant grammar (C), following is the production which is not i the form of CNF:
§— V: Vs Vs
We can write this production as :
SV, (10D
e 1
Thus, from (10)and (11), the resultant grammar becomes :
' § V.S,V |ap
-
=i
b=V 5
v, 87,
V. > 57,
Py = T
Ve]
Thus, the resultant grammar (D) is in the form of CNF, which is the required solution.

5.6.2 Greibach Normal form (GNF)

Greibach normal form can be defined as follows -

I Non - terminal — one terminal. Any humber of non - terminals

Example :
isin GNF
isin GINF

FORMAL LANGUAGES AND AUTOMATA THEORY

From the subtree shown in figure (b) , we get g L mige Orges 2z, §z, andconsidering

the subtree shown in figure(c), weget §—sg OF 5 20

The subtree shown in figure (b) can be added as many times as we like in the parse tree
shown in figure (a). So, 5— 24 8z} = 2, 2,2

Therefore, string z can be written as #zyz, 2,y for someuand y substrings of z. The substrings
z; and z; can be pumped as many times as we like. Replacing z;, z; and z, by v, wand x

respectively, we get z= uvwiy and 5=',w4wfy forsomei=0, 1,2, coveiinnin

Henee , the statement of theorem is proved.

Application of Pumping Lemma for CFLs

We use the pumping lemma to prove certain languages are not CEL. We proceed as we have
seen in application of pumping lemma for regular sets and get contradiction. The result of this
lemma is always negative.

Procedure for Proving Language is not Context - free

The following steps are considered to show a given language is not context - free,

Step1:

Supposcthat £ iscontext- free. Let 1 be the natural number obtained by using pumping lemma.
Step 2:

Chooseastring xe L suchthat {x 21 using pumping lemmaprinciple write z=uvwxy.

Step 3 :

Find suitableiso that w 'we pe-t. - Thisisacontradiction. So £ isnotcontext - free.

FORMAL LANGUAGES AND AUTOMATA THEORY

Case 2:

vegt and yc.t. Let ,_,r and pg=n!. Pumping v and %, (g+1) times, we get :
2= Tty

Inz,no, ofa'swillbe n-p+nl+ p=ntin,

No.ofb's inz' will remain n! 4n. Hence, no. ofa's =no. of b's in z',

Similarly, in other cases, we can arrive at strings not as perspecification of L.
Hence, L is not context free.

5.8 CLOSURE PROPERTIES OF CFLs

The closure properties that hold forregular languages do not always hold for context free languages.
Consider those operations which preserve CFL.

The purpose of these operations are to prove certain languages are CFL and certain languages
are not CFL.

Context-free languages are closed under following properties.
Union
Concatenation and
Kleene Closure (Context-free languages may or may not close under following properties)
Intersection
Complementation
Theorem 5.8.1 :If I and i, aretwo CFLs, thenunionof £, and L, denoted by I; + L,
or [; U Ly isalsoa CFL.
Proof :
Let CFG G, = (¥,,T,,P.8) generates L; and CFG G, = (V,,T,,P,S) generates I,
and G=(V,T, P,S) generates L = [; + L,.

We construct G as follows :

Step 1 : Rename the variables of CFG G,

£y, ={S,4,B,., X}, thentherenamed variablesare {S;, 4;, B;,...X;} . This modification
should be reflected in productions also.

FORMAL LANGUAGES AND AUTOMATA THEORY

Step 2 : Rename the variables of CFG G,

If ¥, ={S,4,B,..X}, then the renamed variables are {S;, 4y, By... X3} - This
modification should be reflected in production also.

Step 3 : We get of the productions of G; and G, to get productions of G as follows :

S — 8| 8;,where §; and §, are starting symbols of grammars G; and G, respectively and
Sy -productions and S - productions remain unchanged.

T=TuT,,
V ={Si, 41, B X 3 U (S5, 45, B,,.. X3}

Since, all productions of G; and G, including S — ;| S, are in context-free form, so
GisaCFG.

Language generated by G :
L(G) =Language generated from (S or S3)
=Language generated from S, or language generated from S,
= I(Gy) or L(Gy) (Since, S and 5, are starting symbols of Gy and G respectively.)
= Ij or Ly (Since, G, produces L; and G, produces L, .)
=L+

Hence, statement of the theorem is proved.

Example : Considerthe CFGs S — aSh|ab and § -» ¢Sdd | cdd , which generate
languages Z; and L, respectively. Construct grammarfor L = Ly + L.

Solution :

Let G; generates ; and G, generates 1, and G = (V,T, P,S) generates L = Lj + Ly.

Renaming the variables of G, and G, we get

¥, ={S,} and ¥, ={S,}, where § - productions are §; — aSib | ab, and
S, -productions are S, — cSydd | cdd

FORMAL LANGUAGES AND AUTOMATA THEORY

PUSH DOWN AUTOMATA

After going through this chapter, you should be able to understand :

Push down automata

Acceptance by final state and by empty stack
Eguivalence of CFL and PDA

Interconversion

Intreduction to DCFL and DPDA
6.1 INTRODUCTION

APDA is an enhancement of finite automata (FA). Finite automata with a stack memory can be
viewed as pushdown automata. Addition of stack memory enhances the capability of Pushdown
automata as compared to finite automata. The stack memory is potentially infinite and it is a data
structure. Its operation is based on last - in - first - out (LIFO). [t means, the last object pushed
on the stack is popped first for operation. We assume a stack is long enough and linearly arranged.
We add or remove objects at the left end.

6.1.1 Model of Pushdown Automata (PDA)

A model of pushdown automata is shown in below figure. It consists of a finite tape, a reading
head, which reads from the tape, a stack memory operating in LIFO fashion.

le— Input Tape

Finite State Control

FIGURE : Model of Pushdown Automata

FORMAL LANGUAGES AND AUTOMATA THEORY

FORMAL LANGUAGES AND AUTOMATA THEORY Page 61

There are two alphabets ; one for input tape and another for stack. The stack alphabet is denoted
by r and input alphabet is denoted by ¥ , PDA reads from both the alphabets ; one symbol
from the input and one symbol from the stack.

6.1.2 Mathematical Description of PDA
A pushdown automata is described by 7 - tuple (Q.2.1',8, 4.2, .F') . Where
1. @ isfiniteand nonempty set of states,
2. =z isinputalphabet,
3. T isfinite and nonempty set of pushdown symbols,
4, & isthe transition function which maps
From O » (2w {&}) » T to(finite subsetof) O x I'*,
g, & (. isthe stariing siate,
Z, e I',isthe starting (top most or initial) stack symbol, and
F ¢ @,isthe setof final states.

6.1.3 Moves of PDA
The move of PDA means that what are the options to proceed further after reading inputs in
some state and writing some string on the stack. As we have discussed earlier that PDA is
nondeterministic device having some finite number of choices of moves in each situation.
The move wiil be of two types :
1. Tnthe first type of move, an input symbol is read from the tape, it means, the head is advanced
and depending upon the topmost symbol on the stack and present state, PDA hasnumber of
choices to proceed further.

In the second type of move, the input symbol is not read from the tape, it means, head is not
advanced and the topmost symbol of stack is used. The topmost of stack is modified without
reading the input symbol. Itis also known asan ¢ -move,
Mathematically first type of move is defined as follows.
8(g,a,2)={(Py ot (P20) @,)} Where for 1 < i < n, g, p; are states in
Q,acki Zelad ael™,
PDA reads an input symbol a and one stack symbol Z in present state ¢ and for any value(s)of
i entersstate p, replaces stack symbol Z by string ¢, I * , and head isadvanced one cellon
the tape. Now, the leftmost symbol of string o, is assumed as the topmost symbol onthe stack.
Mathematically second type of move is defined as follows.
5(‘{!"5!2] = {(Pnal);(qua:)s-vv-(!?n,ﬂ’u)} * W]fm {br]- s '[< n,g, pJ arc Slatﬁs m
O.a €L, Zel,and o, eT™.

FORMAL LANGUAGES AND AUTOMATA THEORY

PDA does not read input symbol but it reads stack symbol Z in present state ¢ and for any
value(s) of i, enters state p,, replaces stack symbol Z by string a, € I" *, and head is not
advanced on the tape. Now, the lefimost symbol of string «, isassumed as the topmost symbol
on the stack.
The string «, beany one of the following :
l. @, =e inthiscase the topmost stack symbol Z,,, is erased and second topmost symbol
becomes the topmost symbol in the next move. It is shown in figure (a).

o)

FIGURE(a): Move of PDA
2. a, = e, e T ,inthis case the topmost stack symbol Z,,; is replaced by symbol ¢. Itis

shown in figure(b)

o)

FIGURE(b): Move of PDA
3. @, = ¢cy...¢,, »inthiscase the topmost stack symbol Z,,, isreplaced by string cic,... ¢, -
Itis shown in figure(c).

FORMAL LANGUAGES AND AUTOMATA THEORY

FIGURE(c): Move of PDA

6.1.4 Instantaneous Description {ID) of PDA

LetPDA M = (0518, 44, Zy.F) , thenits configuration ata given instant can be defined by
instantaneous description (ID). An ID includes state, remaining input siring, and remaining stack
string (symbols). So,anIDis (g.x,) . where g e Q.x e E¥hael'*.

The relation between two consecutive [Ds is represented by the sign ‘—-— i
We say (g,ax,Z2/3) Iﬁﬂsxaﬂﬂ) if & (g.a, Z) contains (p,&), where Z,f,0eT'*,a
maybenullora eZ, p,g e 0 for M

The reflexive and transitive closure of the relation - is denoted by |77
Properties :

1. If(fI,I,aJ\-;}(p,E,&),wl'lere ael*xeX* and p,g e@,thenforall y €Z *.

(q,xy,a)ﬁ(p, y.a),

2. If (G,l}‘,&‘)lj}(PsJ’,G), where ael*x.peZ*, and p.ge@, then

(q,x.alﬁ{pﬁ,a), and
3. If (q,x,ﬂ)‘ﬁp,e,ﬁ}, where @, Bel*xef*, and p,geQ. then

(g% ?’)}_A‘}(psE!ﬂ}'): where Y el *

FORMAL LANGUAGES AND AUTOMATA THEORY

6.1.5 Acceptance by PDA

Let Mbe a PDA, the accepted language is represented by N(M). We defined the acceptance by
PDA intwo ways.

1. Let M =(Q.2T.3, q,.Z4.F),then N(M) is accepted by final state such that
N (M)={wi(qo,W.Z)l54q ;,€,8) , where ¢ € Q, wes%Z,,fel*, and

gy €F}

It is similar to the acceptance by FA discussed earlier. We define some final states and
the accepted language N(M) is the set of all input strings for which some choice of moves
leads to some final state.

Let M =(Q.2,L.,0.9,,Z,.¢) , then N(3) is accepted by empty stack ornull stack such

that N (M) ={wi(q,.w.Z,)IK}(P,G;E), where p € O, w e £*}

The language N(M) is the set of all input strings for which some sequence of moves
causes the PDA to empty its stack.

Note : Ifacceptance is defined by empty stack then there is no meaning of final state and it is
represented by ¢ .

Example : consider a PDA M = ({g4,4;,9,}:{a,ch{a,Z;1,6.45,Z05{g,}) shown in
below figure. Check the acceptability of string aacaa.

a, Zy, aZ, a,a, €

¢, a.a Q Zy, Z, (
__@ \que’o o_@

a,a,aa
FIGURE : PDA accepting {a"ca" :n>1}

Edges are labeled with Input symbol, stack symbol, written symbol on the stack.

FORMAL LANGUAGES AND AUTOMATA THEORY

Solution :
The transition function § isdefined as follows :

8(gg5a.2y) = {(q0,0Z5)} 5
8(gq,a,a)={(gy.aa)},
5(qo:c,a) = {(g1:9)} »
8(g,,a,a) ={(gy,€)}, and

3(qy.6:20) = (g2, Z0)}
Following moves are carried out in order to check acceptability of sting aacaq :

(qy,0acaa ,ZD)!“{QU,QCGQ saZg)
‘—(qr,,ma,aaz)
1—(ql,aa,aaZ o)

|Hg.,a,a2 o)

‘_qusenzo)

|4:.6.24)

Hence, (4,.aacaa .Z,)1%(?1 E,2g) .
Therefore, the string aacaa is accepted by Af.

6.2 CONSTRUCTION OF PDA

Inthis section, we shall see how PDA's can be constructed.

Example 1 : Obtain a PDA to accept the language L(M) = { wCw®| we(a+5)*} Where
pt is reverse of W,
Solution:

Ttis clear from the language L{ M) = { wOw™} that if = abb

then reverse of w denoted by & will be g ® pp, and the language L will be 4,002
i.e., abbCbba which is a siring of palindrome.

FORMAL LANGUAGES AND AUTOMATA THEORY

To accept the string :

The sequence of moves made by the PDA for the string aabChaa is shown below:
Initial ID

(g, aabChaa, Z;) {4y, abChaa, aZy)

o (go, BChan, aaZy)

|- {gg, Chaa, buaZy)

|= (gy,haa baaZ,)

|- (g,00,09Z,)
(gy,0.0Z,)

= (41582,)

ey
(Final Configuration’)

Since g, is the final state and inputstring is < in the final configuration, the string aabChaa
is accepted by the PDA

To reject the string :
The sequence of moves made by the PDA for the string aabChab is shown below,
Initial [T
(gg. aabChab, Z;) (g, abChab, aZ;)
(gp. BChab, aaZ;)
(g, Chab, baaZy)
(g, bab, baaZy,)
(g, ab, auZy)
‘:‘h: b} azl]]
{ Final Configuration)
Since the transition &(g,, b, a) isnof defined, the siring aabChab is not a palindrome and
the machine halts and the string is rejected by the PDA.

Example 2 : Obtain a PDA o accept the language £ = { 4" 5" = |} by a final state.

Solution :

The machine should accept nnumber of a's followed by n number of b's.

FORMAL LANGUAGES AND AUTOMATA THEORY

FORMAL LANGUAGES AND AUTOMATA THEORY Page 68

6.3 DETERMINISTIC AND NONDETERMINISTIC PUSHDOWN AUTOMATA

In this section, we will discuss about the deterministic and nondeterministic behavior of pushdown
automata.

6.3.1 Nondeterministic PDA (NPDA)

Like NFA, nondeterministic PDA (NPDA) has finite number of choices for its inputs. As we
have discussed in the mathematical description that transition function § which maps from
0 % (2 U {&}) x T to(finite subset of) Q x T *. Anondeterministic PDA accepts an input if
asequence of choices leads to some final state or causes PDA to empty its stack. Since, sometimes
it has more than one choice to move further on a particular input ; it means, PDA guesses the
right choice always, otherwise it will fail and will be in hang state.

Example : consider a nondeterministic PDA M = ({g,}.{a.b}{a,b,2}.6.4,.Z), for the

language 1. = {a"" : n = 1} ;where § is defined as follows :
5(gs:€.Z) = {(q» ab):(qq,aZb)} (Two possiblemoves forinput e onthetape and Zon the stack),

8 (455, ={(gq-€)} s and & (gp,b,b) ={(g0,€)}
Check whether string w = gabb is accepted ornot ?
Solution : Initial configuration is (g,,aabs, Z) . Following moves are possible :

(qy. aabb,ab)—~+ (as.abb,b) —+ &
(QU’aabb’Z) {
(gq,aabb,aZb) -~w (g, abb,Zb)

(q())abbsabb) (QD,abbaabe)

(g4,bb,bb) (gy,bb, Zbb)

(Qo:b:b)
(gq.bb,abbb) (qo,bb,aZbbb)
(90:5:€)

[]
Hence, w = aabbis accepted by empty stack.

FORMAL LANGUAGES AND AUTOMATA THEORY

One thing is noticeable here that only one move sequence leads to empty store and other don't.
In other words, we say that some move sequence(s) leads to accepting confipuration and other
lead to hang state.

6.3.2 Deterministic PDA (DPDA)

Deterministic PDA(DPDA) is just like DFA, which has af mest one choice 1o move for certain

input. APDA M = (Q,%.T,8,4,. Z,, F) isdeterministic if it satisfies both the conditions given

as follows ;

1. Foranyg e Q,a e(Zw {e}ﬁ,and Z eI, 8(g,a, Z) has at most one choice of move.

2. Forany ge @, and 7z c 1, if 8(g. 2 Z) is defined ie. 8(g. 5, Z) = ¢, then
8(g,a,7) = pforall g e 5

Example : Consider a DPDA M = ({g4.q;), {a.c}. {@.2,}.8,90. Z,.4) accepting the

language {q"ca” :n =1}, where § is defined as follows :
G(ge.a.Zg) = {(gy,02,)}
G (gqg.9,a) ={(gq.0a)},
a‘ (QBﬁ:‘s a) = {(‘?1 ,'E]')},
8(ay.a.a)={{q.€)}. and 8(qy.6.Z;) = {{g.€)}
Check whetherthe stiing w = aacaa is accepted by empty stack ornot ?
Solution :
We see that in each transition DPDA has at most ene move. Initial configuration is
(g4, aacaa, Z,) . Following are the possible moves.
(go-aacaa . Zy) = (qy,acaa,aZ,) —» (gy.caa,qa ;) = (g, aa,00Z ;)
4
(QI,E,EJ = (ql +E, zp) —{gy.:qa, G.Zu)
Hence, the string w = @acaa is accepted by empty stack:

As we have discussed in earlier chapters that DFA and NFA are equivalent with respect to
the language acceptance, but the same is not true for the PDA.

Forexample, language [={ww ":w = (aw b) #} isaccepted by nondeterministic PDA,
cannot by any deterministic PDA. A nondeterministic PDA can not be converted into equivalent
deterministic PD'A, but all DCFLs which are accepted by DPDA, are also accepted by NPDA.

So, we say that deterministic PDA is a proper subset of nondeterministic PDA. Hence, the
power of nondeterministic PDA is more as compared to deterministic PDA.

FORMAL LANGUAGES AND AUTOMATA THEORY

6.4 ACCEPTANCE OF LANGUAGE BY PDA
The language can be accepted by a Push Down Automata using two approaches.

1. Acceptance by Final State : The PDA accepts its input by consuming it and then itenters
in the final state.

Acceptance by empty stack : On reading the input string from initial configuration for
some PDA, the stack of PDA gets empty.

6.4.1 Equivalence of Empty Store and Final state acceptance

Theorem:
If M, =(04,%,T,8,,p,,Z,,4) is a PDA accepting CFL L by empty store then there
existsPDA M, =(0,,X.1,,8,, p1,Z,,{q,}) whichaccepts L by final state.

Proof :
First we construct PDA 31, based onPDA 4, and then we prove that both accept L.

Step 1 : Construction of PDA), based on given PDA i/,

z issame for both PDAs. We add a new initial state and a new final state with given PDA »1, .

So, 0, =0,V {p, Vg, }

The stack alphabet T, of PDA 1, contains one additional symbol Z, with T, .

So, Ty =T, W {Z,}
The transition function &, containsall the transitions of given PDA. u, and two additional transitions
(R and Ry) asdefined as follows:

Ry :6,(P26, Z,) ={(P1vZ12,)}s

Ry :6,(q.a,2)=08,(g,a,Z) forall (¢,0,Z) in Q, x (£ w {e}) x T,

(the original transitions of 4,),and
Ry:6,(9,€,Z,)={(g,,€)} forall ge O,

Bythe Ry, », moves fromitsinitial ID (p,,e,Z,) totheinitial ID of a; By R,, M, usesall the
transitions of u, afterreaching the initial ID of , and by using Ry 4, reaches the final state g 7 .

FORMAL LANGUAGES AND AUTOMATA THEORY

The block diagram is shown in below figure.

& Z 2 &, 2,54

FIGURE : Block diagram of PDA a1,

Step 2 : The language accepted by PDA A, and PDA M,

The behaviorsof Af, and M, are same except the two by ¢ -movesdefinedby By and Rj.
Let string w ¢ I andaccepted by M, then

(p,,w,z,'}|ff-l—(q.e,e) where g e (Result 1)
For M, theinitial ID is (p,,w,Z,) and itcanbe written as (p,,ewe,2,). So,

(Prrewe,Zy) |7z (P W.Z12Z,) (This nital Dof 31,)
|;§; (g,€.Z;) (by Ry and Result 1)

lT;z_ (g.€.¢) ael, (By Ry)

Thus, if M, acceptsw, then M, also acceptsit.
Ttmeans L(M,)c LM)) {Result 2)
Letstring e« I and accepted by PDA M, then

(pyewe,Z,) |M—=(p1.m212'2) By &) (Result 3)

',\';_1 (q:E: Zz] . (B}" Rz} (Rssult 4)

%E (gr.ea) ael; By R)

Note : The Result 3 is the initial ID of M. The Result 4 shows the empty store for M, if
symbol Z; is not there,

FORMAL LANGUAGES AND AUTOMATA THEORY

For M,,theinitial IDis (p,, w,Z,)

So, (P1sw.Z,) |57~ (4,€,€) , where ¢ € @, (ByResult 3 and Result 4) Thus, if M, accepts
w,then M, also acceptsit.
Itmeans, L(M,)c L(M,) (Result 5)

Therefore, L=2(M,)= L(M,} (FromResult? and Resuit 5)
Hence, the statement of theorem is proved.

Example: Consider a nondeterministic PDA M, =({g,}.fa.b}. {a.b, 5}, 5.4,.5.¢) which
accepts the language £ = (o"p" : n =1} by empty store, where § isdefined as follows :
S(gq,2.8) ={{g0,ab) (g,,a58)} (Two possible moves),
d(g9,0:a) ={(gy:8)}, and 5 (gq.b,8) = {(g,.€)}

Construct an equivalent PDA Af, which accepts I, in final state and check whether string
w = aabb is accepted or not ?

Solution : Following moves are carried out by PDA. M, in order to accept w = qabb :
(99:aabb S) | — (g, aabh,aSt)

| —(qy,abb, Sb)

|—(ao»abb,abt)

|—(qq, b5, bb)
‘_(‘Io'abs b)

‘_ (gy,8,€)

Hence, (do,aabb,8) 55~ (9,,)
Therefore, w = agbb isacceptedby M.

FORMAL LANGUAGES AND AUTOMATA THEORY

UNIT-5

TURING MACHINES

After going through this chapter, you should be able to understand :

Turing Machine

Design of TM

Computable functions

Recursively Enumerable languages
Church's Hypothesis & Counter machine
Types of Turing Machines

7.1 INTRODUCTION

The Turing machine is a generalized machine which can recognize all types of languages viz,
regular languages (generated from regular grammar), context free languages (generated from
context free grammar) and context sensitive languages (generated from context sensitive grammar).
Apart from these languages, the Turing machine also accepts the language generated from
unrestricted grammar. Thus, Turing machine can accept any generalized language. This chapter
mainly concentrates on building the Turing machines for any language.

7.2 TURING MACHINE MODEL

The Turing machine model is shown in below figure . It is a finite automaton connected to read -
write head with the following components :
() Tape
Read - write head
Control unit

Tape

eTa e [as [[blvfeT...T 1

Read-write Head

Control
Unit

FIGURE : Turing machine model

FORMAL LANGUAGES AND AUTOMATA THEORY

Tape: ltisatemporary storage andis divided into cells. Bach cell can store the information of
only one symbol. The string to be scanned will be stored from the Jeft most position on the tape.
The string to be scannied should end with infinite number of blanks.

Read -write head : The read - write head can read a symbol from where itis pointing to and
it can write into the tape to where the read - write head points to.

Control Unit: The reading /writing from / to the tape is determined by the control unit. The
different moves performed by the machine depends on the current scanned symbol and the
current siate, The read - write head can move either towards Teftor right 1.6., movement can be
on both the directions. The various moves performed by the maching are ;

1. Change ofstate from one state to another state
2. ‘The symbol pointing to by the read - write head can be replaced by another symbol,
3. Theread - write head may move either towards left ortowards right.
The Tiring machine can be represented using various notations such as
Tremsition table
Insfantaneous description
. “Transition dizgram
7.2.1 Transition Table

The table below shows the transition table for some Turing machine. Later sections describe how
to obtain the transition table.

Tape Symbols (1)
a _ ¢ B

(g1 X, R) g3, Y, R} -

(g1, 8, K) (g ¥, B} =

(q:!! a, L:} ((I{'?! Y! L) =

- (QB» ¥, R} {‘?éa B, R}

FORMAL LANGUAGES AND AUTOMATA THEORY

Note that for each state q, there can be a corresponding entry for the symbol in 1. Inthis table
the symbols a and b are input symbols and can be denoted by the symbol 5, Thus ST
excluding the symbol B. The symbol B indicates a blank character and usually the string ends
with infinite number of B's i. £., blank characters. The undefined entries indicate that there are no
- transitions defined or there can be a transition to dead state. When there is a transition to the
dead state, the machine halts and the input string is rejected by the machine. It is clear from the
table that
0= Tw(PxTx{LKR})

where G= {40,292 2. 9s by T={a b}

F'={g b X, ¥.B}

qp 18 the initial state; B isa special symbol indicating blank character

F ={¢.} whichisthe final state.
Ttws , a Taring Machine M can be defined as follows.
Definiion : The Turing Machine M =(0,%,7,5,4,,8,F) where

Qs set of finife states

. is setof input alphabets

F issetoftape symbols

& is transition function Q@ xT'ro (@ xP={L,R})

7o 15 the initial state

B isaspecial symbol indicating blank character

F <@ isset of final states.

7.2.2 Instantaneous description (ID)

Untike the ID described in PDA, in Turing machine (TM), the 1D is defined on the whole string
{ not on the string to be scanmed) and the current state of the machine.

Definition :

AnIDof T™M is astring in g, where q isthe current state, o g is the string made from tape
symbols denoted by i, ¢., e and f e I'*. Theread - write head points to the first character of
the substring 3. The initial IDisdenoted by ¢aff where q is the start state and the read - write
head points to the first symbol of o from left. The final ID is denoted by «f¢B where g6 F is
the final state and the read - write head points to the blank character denoted by B,

FORMAL LANGUAGES AND AUTOMATA THEORY

Example : Consider the snapshot of a Turing machine
Tape
(o]2 laaloy[azlag agian] el

Read-write Head [

Conirol
Unit

T this machine, each ¢ e I" (i.e.,each 4, belongsto the tape symbol). In this snapshot, the
symbol a; is under read - write head and the symbol towards left of g, 1.¢., g, isthe current
state, Note that, in the Tuting machine, the symbol immediately towards left of the read - write
head will be the current state of the machine and the symbol immediately towards right of the
state will be the next symbel to be scanned, So, in this case an ID is denoted by

eyt Gy B0y Clyreneens

where the substring aa,asu; towards left of the state g, is the left sequence, the
SubSting a,6,;a..... towards right of the state 4, is the right sequence and 4, isthe current state
ofthe muchine. The symbol a; isthe next symbol 1o be scanned.

Assume that the current ID of the Turing machine IS aa,0,¢,q, @,3651:Gy. .. 8 Shown in
snapshot of example. '

Suppose, there is a transition &gy, a5) = (¢s. 5, R)

It resns that if the machine is in state ¢, and the next symbol to be scanned is ;. then the
machine enters indo state ¢, replacing the symmbol a, by by and R indicates that the read - write
head ismoved one sytabol towards right. The new configuration obtained is

810,058, bylf3 @4 ladlgior:

This can be represented by 8 MOVE 48 00,00, 2t GelyTy-... | = 010,35, B101 a7y
Similarly if the current 1D of the Turing machive is aya,a,0,9,25050:¢ s
and there is a transition

8(q,, a5)={g, 161, 1)
raeans that if the machine isin state g, and the next symbol to be scanned is ay, then the machine
enters into state g, replacing the symbol a; by ¢, and L indicates that the read - write head is
moved one symbol towards left. The new configuration obtained is

Ay g Ay g3y

FORMAL LANGUAGES AND AUTOMATA THEORY

This can be representod by a mOve 88 6,0,0,0, 3050507050 | @008 1040105 Ty e

This configuration indicates that the new state is ¢, , the next input symbol to be scanned
i8 a; . The actions performed by TM depends on

1. Thecurrent siate.

2. The whole string fo be scanned

3, The current position of the read - write head
The action performed by the machine consists of

1. Changing the states from one state to another

2. Replacing the symbol pointed to by the read - write head

3. Movement of the read - write head towards Ieft or right.

7.2.3 The move of Turing Machine M can be defined as follows

Definition : Let M =(3,2T,6.9,.8.#) be a T™M., Let the ID of M be

@y2,05 a, where ¢, T for 1= j<n-1, g « (2 isthe current state and 4, as

the next symbol to scarmed, If there is a transiiion g, a.) =(p, &, B

thenthe move of machine Mwill be a0,)0 g6, g pgenn @y 10103050 g1 80T 4y 0nd,
Ifthere is a transition g, a) =(p, b, L)

then the move of maching M will be

F g Qo GO B gy S @y Qe Py B8,

7.2.4 Acceptance of a language by TM
The language accepted by TM is defined as follows.

Definition ;

Let M = (0,5.1,6.4,.8,F) be a TM. The language [{M) accepted by M is defined as
L{M)=fwigyw-*a, p o, where wel*®, pc F and @, 05 € T'*}
i.e,, setof all those words w in .+ which causes M to move from start state g, to the final
state p. The language accepted by TM is called recursively enumerable language.

The string w which is the string to be scanned, should end with infinite number of blanks.
Tnitiafly, the machine will be in the start state g, with read - write head pointing to the first symbol
of w from left. Afler some sequence of moves, if the Turing machine enters into the final state and
halts, then we say that the string w is accepted by Turing machine.

FORMAL LANGUAGES AND AUTOMATA THEORY

7.2.5 Differences between TM and PDA
Push Down Automa

:

&
&

4.

3,

6.

T

A PDA is anondeterministic finite automaton coupled with a stack that can be used to store
astring of arbitrary length.

“The stack can be read and modified only atits top.

A PDA chooses its next move based onits current state, the next input symbol and the
symbol at the top of the stack.

There are two ways in which the PDA may be aflowed to signal acceptance. One ishy
entering an accepting state, the other by emptying its stack.

T consisting of the state, remaining input and stack contents to describe the "current condition
of aFDA.

The languages accepied by PDA’s either by final state or by empty stack, are exactly the
coptext - free languages,

A PDA lanpuages He strictly between regular languages and CSL's.

Turing Machines ;

1.

The TM is an abstract computing machine with the power of both reat computers and of
other mathematical definitions of what can be computed.

TM consists of a finite - state comtrol and an infinite tape divided into cells.

TM makes moves based on its current state and the tape symbol at the cefl scanned by the
tape head.

. The blank is one of tape symbols but not input sytnbol.

TM accepts its input if itever enters an accepting state.
The languages accepted by TM's are called Recursively Enumerable (RE) languages.

: Instantaneous descriptionof TM describes cument configumtionof i T by finite - lenpth siring,

Storage in the finite control helpsto design a T™ for a particular language.

. A'TM can shmulate the storage and control of a real computer by using onetape to store all

the locations and their contents.

7.3 CONSTRUCTION OF TURING MACHINE (TM)

In this section, we shall see how TMs can be consiructed,
Example 1: Obtaina Turing machine to accept the language L = {0 “1" {n21}.

Solution : Note that niumber of 0's should be followed by n number of 1's, For this let us
take an example of the string + = 00001 111. The string w should beaccepted as ithas four zerces
followed by equal mumber of 1's.

FORMAL LANGUAGES AND AUTOMATA THEORY

General Procedure :
Let g, be the stast state and let the read - write head points o the first symbol of the string wobe
scanped. The general procedure to design TM for this case i3 shown below !
1. Replace the left most { by X and change the state fo ¢, and thenmove theread - wtite head
towards right. This is because, aftera zero s replaced, we have to replace the corresponding
1 so that number of zeroes maiches withnumber of 1's.
2. Search for the leftmost | and replaceitbythe symbol Y and move towards lefi (s0 8510
obtain the lefimost 0 again). Steps 1 and 2 can be repeated.
Consider the situation
XX00YY11
T
T
where first two (s ate veplaced by Xs and firsttwo I's are replaced by Ys. Inthis situation, the
read - write head points to theleft most zero and the machine is in state g, . With thisas the
configuration , now let us design the TM.
Step 1 : Instate gy, replace 0 by X, change the state to ¢, and move the pointer towards
right. The transition for this can be of the form ' ;
8y, O = (g, X, B)
The resulting configuration is shown below
XXXOYYH
/T
4
Step 2 : In siate g, , we have fo obtain the Jeft - most 1 and replace itby Y. For this, let us move
the pointer f point to lefimost one. When the pointeris rmovedtowards 1, the symbols encountered
may be 0 and Y, krrespective what symbol is encoustered, replace 0 by 0, Y by Y, remain instate
g, snd move the pointer towards right. The transitions for this can be of the form

8(q,.0)=(q.0,. K}
S(GI:Y}:{QI ,Y -R)

When these transitions are repeatedly apphied, the following configuration is obtained.

XXXOYY1
T
43

FORMAL LANGUAGES AND AUTOMATA THEORY

Step 3 : Insiate g, if the input symbol to be scanned isa 1, then replace 1 by Y, change the
state 1o g, and move the pointer towards left. The tzansition for this can be ofthe form
Sig, 1l=(g,.F,L)
and the following configuration is obianed.
XXXOYYYL
T

gz
Note that the pointer is moved towards left. This is because, azero isreplaced by X and the
corresponding 1 is replaced by Y. Now, we have to scan for the left most 0 again and so, the
pointer was move towards left, _
$tep 4 : Note that to obtain lefimost zero, we need to obtainright most X first. So, we scan for
the right most X, During this provess we may encounter Y's and 0's . Replace Y by Y, 0 by 0,
vemam in state g, only and move the pointet towards loft. The transitions for this can be ofthe
form 5(q_g-Y}={q3,Y,£-)
8(¢7,0)=(g2.0.£)
The fullowing configuration is obtained
XXX0YYYI
¥
7
Step 5: Now, we have obtained the right most X. To get lefimost 0, reptace X by X, change
the state o g, and move the pointer towards right. The transition for this can be of the form
Sy X)=(q0s X R}
and the following configuration isobtained
XXX0YYY]

1
4
Now, repeating the steps 1 through 5, we get the configuration shown below
KXXKYYYY

1
e
Step 6 : Instate g, , ifthe scanned symbol is Y, it means that there are nomore 0's. If there are

1o zeroes we should see that there are no 1's. For this we change the siate to g, , replace Yby Y
and move the pointer fowards right. The transition for this can be of the form

FORMAL LANGUAGES AND AUTOMATA THEORY

8(q0.Y)=(4:,¥.R)
and the foliowing configuration is obtained
XXXXYYYY
T
V&3
Instafe g,, we should see that there are only Ys and no more 1's. So, as we can replace Y by Y
and remain in ¢, only. The transition for this can be of the form
(g5.Y)={g;,¥ .R)
Repeatedly applying this transition, the foliowing configuration is obtained..
XXXXYYYYB
4
93
Note that the string ends with infinite number of blanks and so, instate ¢, 1f we encounter the
symbol B, meansthat end of string is encountered and there exists n number of 0's ending with i
mumber of 1's. So, in state ¢, , on input symbol B, change the state to ¢, replace B by B and
move the pointer towards right and the string is accepted. The transition for this canbe of the
fomn 9(g;,8)=(g,.B,R)

The following configuration is obtained
XXXXYYYYRBB
T
ds

So, the Turing machine to accept the language £ ={a" 5| n21}

isgivenby M =(0.5.1,6,0,.8,F)
where
0={qs. 0,92 15 E={01}; P={01L XY B}
ge € Q isthe startstate of machine; B eI isthe blank symbal,
F ={q,} isthefinal state,
& is shown below,
&gy O = (g5, X, R)
9(¢4.0)=(g,,0,K)

FORMAL LANGUAGES AND AUTOMATA THEORY

5(‘3?}Y)"'=(Q1:Y7R)
§(ayt)={42.7,L)
S(g,.F)=(q,,Y L)
5{¢4,8)=(g,,0.5)
8{g2.X)={go. X .R)
F(qq.Y)=(q4:¥ ,R)
d(qs.Y)=1g:.T.R)

8(q:.B)=(q4,8.R)
The transitions can also be represented using tabular form as shown below.

& ‘Fape Symbols (1)
States ¢ 1 ¥

o (. X, R} " {g3, V. B}

@ (g:.0.R) | gV D2 @R

47 (‘??:GJL) = {q2, Y, L}

i & - (. 1 B (g B, B

43 s ™ ‘

The transition table shown above can be represented as transition diagram as shown below

YIY.R YIYL
O.R Of0,L

To accept the string :

The sequence of moves or computations (IDs} for the string 0011 made by the Turing machine
are shown below :

FORMAL LANGUAGES AND AUTOMATA THEORY

|~ Xg,011 |~ X 0g,ll
X, 0¥t gX0F]
Xg,0¥1 XXg i
XA¥g,t b XXg b
X a1y F o XX FY
XX¥gs¥ - XXT¥g,
XXYYBy,
{ Final I

Example 2 : Obtain a Turing machine to accept thefanguage L (M) = {¢" "2" {n2 1}

Solution : Note that n number of 0's are followed by n number of 1's which intum are followed
by nnumber of 2's. Tn simple terms, the solution to this problem can be stated as follows :

Replace first n number of O's by X's, next nnumber of 1's by Y's and next n number of 2s by
Z's. Consider the situation where in fitst two 0's are replaced by X's . next immediate two I's are
teplaced by Y's and next two 2's axe replaced by Z's as shown in figure 1(a).

XXO0YY11Z722 XXXOYY11ZZ22 BKOYY 117222
1 1 ?
{0 4 4
(@ () ()

_ FIGURE 1 : Various Configurations

Now;, with figure 1{a). a as the cumrent configaration, et us design the Turing machine. In
state g, , if the next scanned symbol is 0 replace it by X, change the state to ¢, and move the
poiniertowards right and the situation shown in figure 1(b) is obtained . The transition for this can
beof the form

G{g,0)=(g:,, X, R}

Instate g,, wehave to search for the Iefimost 1. It is clear from figure 1(b) that, when we
are searching for the symbol 1, we may encounter the symbols O or Y. So, replace G by 0, Y by
Y and move the pointer towards right and remain in siate g, only. The transitions for this can be
ofthe form 84g0=(q,.0,R)

d(g..¥)=(q:.T.R)

FORMAL LANGUAGES AND AUTOMATA THEORY

The configuration shown in figure 1(c) is obtained. In state q,, onencountering i changethe
siate 10 ¢., replace 1 by Y and move the pointer towards right. The iransition for this can be of
the form.

8¢q, d)=(q,.¥.R)
and the configuration showm in figure 2¢a) is obtained

XXKOVYY12422 XXXOYYY1Z2722 XXXOYYY1Z2222
T T t
U & UH

(@ 0 ©
FIGURE 2 : Various Configurations

In state g,, we have to scarch for the lefimost 2. It is clear from figure 2(a) that, when we
are searching for the symbol 2, we may encounter the symbols 1 or Z. So, replace 1 by 1, Z by
Z and move the painter towards right and remainin state g, only and the configuration shown in
figure 2(b) is obtained. The transitions for this can be ofthe form

dig, 31}2(‘22’19}2)
6(g,,2)={¢:.2,R)

Instate g,, onencountering 2, change the state to ¢, . replace 2by Z and move the pointer
towards left, The transition for this can be of the form

8(g2.23=g4.2 L)
and the configuration shown in figure 2(c) is obtained. Once the TMiis instate ¢, it means that
equal muber of 0's, 1'sand 2's are replaced by equal number of X's, Y's and Z's respectively.
Atthis point, next we have to search for the rightrmost X to get leftmost 0. During thisprocess, it
is clesr from figure 2(c) that the symbols such as Z's, 1,5, Y's, O's and X are scanned respeetively
one after fhe other. So, replace Z by Z, 1 by 1, Yhy Y, 0 by 0, move the pointer towards left and
stay in state g, only. The transitions for this can be of the form

8{q4,2)=1g,5.Z,L)}

d{g;.0)=(g4.1,4)

6{gs, ¥)=(g5.7 L)

8{g5,0)=(43,0,L)

Only on encountering X, replace X by X, change the state o g, and move the pointer
towards right o get leftmost 0. The transition for this can be of the form

3{qs. X ¥=(g0.4 R}

FORMAL LANGUAGES AND AUTOMATA THEORY

Allthe steps shown above are repeated till the foflowing configuration is obtained.
XXXXYYYYZZZZ

4
4

In state g, , if the input symbol is Y, it means that there are no 0's, If there are no 0's we
should see that there are nio 1's also. For this to happen change the state to g,, teplace Y byY
and move the pointer towards tight. The transition for this can be of the form

6(qo-Y Y=(g4.Y.R)

Instate ¢, search for only Y's, replace Y by Y, remain in state g, only and move the pointer

towards right. The transition for this can be ofthe form
8(g4. Y)=(q4.Y,R)

In state ¢, .if'we encounter Z, it means that there are o 1's and so we should see that there
are no 2's and only Z's should be present. So, on scanning the first Z, change the state {0 g, .
replace 7 by Z and move the pointer towards right. The fransition for this canbe of the form

8¢ 4:2)=(g5.2,R)

Bui, instate ¢, only Z's should be there and no more 2's. 50, 83 long as the scanned symbol
is Z. remain in state g, , teplace Z by Z and move the pointer towards right. But, once blank
symbol B is encountered change the state to g, , replace B by Band move the pointer towards
right and say that the input string is accepted by the machine, The transitions for this can be of the
form 5(g5.2)={g5,2,R)

5(qs,8)=(g,.B.R)
whete g, is the final state,
So, the TM to recognize the language L= {071"2"{n21} 1S givenby
M = (0,5, 7.6.94,8,F)
where
Q:f40>qu‘12973v(]4>‘15~q5}_; Z={0,12}
r=40,12 X ¥, Z B}; ¢, istheinitial state
Bisblank character; F=={ g, }isthe final state
5 is shown below using the transition table,

FORMAL LANGUAGES AND AUTOMATA THEORY

qil

4
4 q,:ZR
g, 4,21
4, 9, R
4 g, LR

9
The transition diagram for this can be of the form

YIYR ZZR
L T

Example 3 : Obtaina TMto accept thelanguage £ = {w]w =(0+1)7} containing the substring 001,

Solution : The DFA which accepts the language consisting of strings of 0's and 1's having a sub
siring 001 isshown below

The iransition table for the DFA is shown below

FORMAL LANGUAGES AND AUTOMATA THEORY

0 1

P q, 9
7 9, %
4 % 4,

¢, 4, q,

We have seen that any language which is accepted by a DFA s repular. As the DFA processes
the input string from lefl to right in only one direction, TM also processes the input string in only
one dircetion (untike the previous examples, where the read - write header was moving in both
the directions), For each scannied input symbol cither O or 1), in whichever state the DFA was
in, TM also enters into the same staies on same input symbals, replacing 0 by O and | by 1 and
the read - write head moves towards right. 8o, the transition table for DFAand TM remains
same(the format may be different, It is evident in both the transition tables). So, the transition

table for TM ta recognize the language consisting of O's and 1's with 2 substring 601 is shown
below:

¢ 1 B
, 4,0, R ¢, LR

g, g, 0L R 7., LR

4 q:’{}’R qa’lﬂR
4, @',s(}.-R ‘.Zae}:R

4,
The TMis given by

M :(Q,za}-_:ﬁ’QtHBrF)
where

O=1{4gys #,:4::9:: 9.3 > E={0 1}
U'={6,1}; §- isdefined already

g, is theinitia} state; Bblank character
F=1{ ¢, }isthe final state

"The transition diagrar for this is shown below,

FORMAL LANGUAGES AND AUTOMATA THEORY

(.
e Of(}, il

VLR

Exampled: Obiaina Turing machine fo accept the language containing strings of (s
and 1'sending with 011.

Solution : The DFA which accepts the language consisting of strings of (/s and t's ending
withthe string 001 isshownbelow:

The transition table for the DEAis shownbelow

8 0

] d, 9

4, 4 4

7, ;i 4 4;

4, 4 4y

We have seen that any language which is sccepted by a DFA is regular. As the DFA processes
the input string from left to right inonly one direction, TM also processes the input string in only
one direction. For sach scanned input symbol (either 0 or 1), in whichever state the DFA was
in, T™ also enters into the same states on same input symbols, replacing 0 by O and 1 by Land
the read - wrile head moves towards right, So, the transition table for DFA and TM remains
same the format may be different. Tt is evident in both the transition tables). So, the transition
table for TM to recognize the language consisting of ('s and 1's ending with a substring 001 is
shown below: .

FORMAL LANGUAGES AND AUTOMATA THEORY

FORMAL LANGUAGES AND AUTOMATA THEORY Page 90

5 0

q, q,.-0.R
a g0 R
; g,LR
4, 7,0, R

3 7

The TMisgivenby M =(Q.2.T8.4..8.F)
where
O=1{4p 41005} 5 E=0,13 5 T={0.1}
& — isdefined already
g, istheinitial state ; B doesnot appear
F={ g, }isthe final state
The transition diagrem for this isshown below:

Example 5 Obtain a Turing machine to aceept the language

L={wwis eveneomd Z= {a.b}}
Solution :

“The DFA to accept the Janguage consisting of even number of characters is shown below.

FORMAL LANGUAGES AND AUTOMATA THEORY

The transition table for the DEA is shown below :

a b
2. q, 4,

4 4 U

We have seen that any language which is accepted by a DFA s regular. As the DFA processes
the input string from left to right in only one direction, TM also processesthe input string in only
one direction. For each scanned input symbol (either a orb), in whichever state the DFA was in,
‘TM also enters into the same states on same input symbols, teplacing a by a and bby band the
vead - write head moves towards right. So, the transition table for DFA and TM remains same
{the format may be different). So, the transition table for TMto recognize the language consisting
of a's and b's having even number of symbols is shown below ¢

& a b B

da q::asR gi':b;R- QﬂBvR

q; QQSa‘vR gst!R w

. i
The TM is given by

M =(Q E.I.8.9,.8,F)
where
Q={4gsq & =f{a b} ; [={ah
§— isdefined alveady ; ¢, istheinitial state
B does not appear | F = { ¢, } isthe final state

The ransition dingram of TM s given by

FORMAL LANGUAGES AND AUTOMATA THEORY

Example 6 : Obtaina Turing machine fo accepta palindrome consisting of a's and b's of any length.
Solution : Letus assume that the first symbol on the tape is blank character B and is followed
by the string which intum ends with blank character B. Now, we have to design a2 Turing machine
which accepts the string, provided the string isa palindrome. For the string to be a palindrome,
the first and the last character should be same, The second character and last but one character
ins the string shiould be same and $o on. The procedure to accept only string of pelindromes is
shown below. Let qU be the start state of Turing machine,

Step 1 : Move theread - write head to point to the first character of the siring. The transition
forthiscanbeoftheform 8(g,,8)=(g,.5,R)

Step 2: Instate g,,ifthe first character isthe symbol g, replace it by B and change the siate

{0 ¢, endmove the pointer towards right, The transition for this can be of the form
F{gy,a)={g:B.R)}
Now , we move the read - write head to point to the last symbol of the string and the last

gymbol should be a. The symbols scanned during this process area's , b's and B. Replace a by
4, bby b and move the pointer fowards right. The transitions defined for this can be of the forin

Flgz,a)={q,,a,R)
F{q,.0)=0g,.5,R)

But, once the symbol B is encountered, change the state to ¢, , replace B by B and move the
pointer towards left. The transition defined for this can be of the form

8(gy.8)=(q4,B,L)

In state g, . the read - write head points to the last character of the string. If the last character
is a, then change the state to ¢, , replace a by B and move the pointer towards left. The transitions
defined for this can be of the form _

8{g3,a)=(g4,8,L)

At this point, we know that the first character is a and last character is also a, Now, reset the

read - write head to point to the first non blank character as shown in step5.

Instate ¢,, ifthe last character is B (blank character), it means that the given string isan odd

patindrome. So, replace B by B change the state to ¢, and move the pointer towardsright. The

transition for this can be of the form
8{q4,B)u(qy.B.R)
Step 3 : Ifthe first character is the symbol b, replace it by B and change the state from ¢, 10 ¢,
and move the pointer towards right. The fransition for this can be of the form
F{g1.b)=(gs,B.2)

FORMAL LANGUAGES AND AUTOMATA THEORY

Now, we move the read - write head to point to the lagt symbol of the string and ihe last
symbol should be b. The symbols scanned during this process are s, b's and B. Replaceaty &,
bbyband move the pointer towards right. The transitions detined for this can of the form

5{95#)"'(45:ﬂ,~R}
S(gs.by=(gs,0,R)

But, once the symbol B is encountered, change the state 10 g, , teplace Bby B and move

the pointer towards Teft, The transition defined for this can be of the form
5{45 ,B}“(gé,B,L)

In state g, , the read - write head points to the last character of the siring, [f'the last character

isb, then change the state to g, , replace b by Band move the pointer towards left. The transitions
 defined for this can be of the form
J(?sJ’)“(?@»Bsff}

At iz point, we know that the first characteris b and bast character isalso b. Now, reset the

read - write head to poiitt to the first non blank character as shown in step 5.

Tnstate g, , I the last character is B (blank character }, it means that the given siring is an
odd palindrome. So, replace B by B, change the state to ¢, and move the pointer towards vight.
The transition for this can be of the form

8(q5.8)=(q,;,8,R)
Step 4: Tn state ¢, ifthe first symbol is blark character (B), the given string iseven palindrome
and so change the state 10 ¢, , replace Bby B and move the read - write head towards right. The .
transition forthis can be of the form

8(g..B)=(4,.B.R)

Step §: Reset the read - write headto point to the first non blank character. This can be done
53 shown below.

T the firstsymbol of the string isa, step2 is performed and if the first symbol of the string is
b, step 3 is performed. After completion of step 2 ot step 3, itis clear that the first symbol and the
kst symbol mateh and the machine isci.lmenﬂy in state g, . Now, wehave to reset the read - wiile
head to point to the first nonblank character in the string by repeatedly moving the head fowards
left and remainin state ¢, . During this process, the symbols encountered may beaorborB
(blank character). Replace a by 2, b by b and move the pointer towards {eft. The transitions
defined for this can be of the form 8(q4,a)=(g.a, L)

5(?drb)=(Q4sbt£)

FORMAL LANGUAGES AND AUTOMATA THEORY

But, if the symbol B is encountered , change the state to g,.replace B by B and move the pointer
towards right. the transition defined for this can be of the form

5(a4:BY=(gq,,B,R)
Affer resetting the read - write head to the first non - blank character, repeat through step 1.
So, the TM toaccept strings of patindromes over { a,b }isgivenby 4 =(Q, %, 4. g5, B.F)

whete Q0= {9,,4,,4,-9,.9,-9,- 94, } 3 B=fa. b} : T={ab B}; g, istheinitial state

Bisthe blank character; F={ ¢, }; ¢ is shown below using the transition table

=
g a b B

s = 2 %) B) R
g, 7..B.R g..B.R q,,8B,R

8 7., R g,:5,R [
r:3 - e T ER
4, g3 L g,.b, L ¢, B.R
q, 7.,3,R g..b. R ¢.-B, L
4 . 4>BL | 4,BR

g . s .
The transition diagram to accept palindromes over { a, b }is given by

‘Thereader can trace the moves made by the machine for the strings abba, aba and aabaand is
left as an exercise.

FORMAL LANGUAGES AND AUTOMATA THEORY

Example 7 ; Construct a Turing machine which accapts the language of aba over £={a,b}.

Selution : ThisTMisonlyforL={aba}
We will assume that on the input tape the string 'aba’ is placed like this

la Eb ia {B
%

The tape head will read out the sequence upto the B character if 'sba’ is readout the TM will
haltafter reading B.

\ @8R N GBR) N R
Start 3 ! A
(B.B.5)

(HaLY)
The triplet along the edge written is { input read, output to be printed, direction)
Let us take the transition between start stafe and g, is(a, 4, R) thatis the current symbol

read from the tape is a then as a output a only has to be printed on the tape and then move the
tape head to the right. The tape will look ke this

I 1
Lo il al B t8] e
t
Again the transition between ¢, and ¢, is (b, b, R). That means read b, print band move
right. Note that as tape head is moving ahead the states are getting changed.

[a o fol® |5
T

The TM will accept the language when itreaches 10 halt state. Halt state is always a accept
state forany TM., Hence the transition between ¢, and halt is (B, B,). This meansread B, print
Band siay there or there is no move left or ripght, Eventhough we write (B, B, L or (B, BR)
it is equaily correct, Because after all the complete input is already tecognized and now we
stmply want to enter into a accept state or final state. Note that for invalid inputs such as abb or
ab ot bab there is either no path reaching to final state and for such inputs the TM gets
stucked in between. This indicates that these all invalid inputs can not be recognized by our TM.

The same TM can be represented by another method of transition teble

FORMAL LANGUAGES AND AUTOMATA THEORY

a b
Start (9‘ oty R} ™

4, . (g0, R}

q, ('?;sa!R) = =

4, - (HALT, B, §)
HALT : 3

Inthe given transition table, we write the tripletin eachrowas :
{Next state, cutput to be printed, direction)
Thus TM can be represented by auy of these methods.

Example 8 : Designa TMthat recognizes theset L= {071"]n 2 0}.

Solution : Here the TM checks for each one whether two ('s are present in the left side. fit
match then onty it halts and accept the siving.

The transition graph of the Th s,

FIGURE : Turing Machine for the given language £= {{""1"ln 2 0}

FORMAL LANGUAGES AND AUTOMATA THEORY

Example 11 : What does the Turing Machine described by the § - tuples,
{QO ?'01 L4 :r“:' R}:(q& *iﬂ 4 !Oa T‘)a(% 1 Bo qas B, R} ¥

(4,0..9, B}, (9,141 R) and (4,,8.9,,B,R) Dowhengiven abitstring
as input 7

Solution ; The transition diagram of the TM is,

oL R

FIGURE : Transition Diagram for the given TM
The TM here reads an input and starts inverting 0's to 1's and 1's to s till the first 1.
After it has inverted the first 1, it read the input symbo} and keeps itas itis till the next 1.
After encountering the 1 it starts repeating the cycle by inverting the symbol till next b, Tt haits
when it encourters a blank symibol.

7.4 COMPUTABLE FUNCTIONS

A Turing machine is a language acceptor which checks whether a string x is accepted by a
language L. In addition to that it may be viewed as computer which performs computations of
fimctions from integers to integers. Intraditional approach an integer is represented in unary, an
integer ;> 0 isrepresented by the string ¢ .

Example 1: 2is represented as g2 . Ifa function has k arguments, i, &4y » then these

integers are initially placed on the tape scparated by 1's,25 0110 % 1....... 10% .

T the TM haits { whether in or not in an sccepting state) with a tape consisting of 0's for some m,
thenwe say that f(f, iysmedy) =m, where fis the function ofk arguments computed by this
Turing machine.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 100

Slga =g, B, 1}

(g4, 0) = (94, 0. 1)

(2,0} =190, R)
Ifinstate ¢, a B is encountered before a 0, we have sitnation (i) described above. Enter state
9,and raove left, changing all 1's to B 's until encountering a ‘B This B ischanged back toa 0,
state g, isentered, and M halts,
6 © O(gpsd) = (2. By B)

8(75:0) = (g5, B, R)

(5.1} = (g5, B, R)

; 5(?5:3) = (g B. R)

Ifin state ¢, a 1 isencountered instead of a 0, the first block of 0's has been exhausted, asin
situation (i) above. M enters state ¢, to-crase the rest of the fape, then enters ¢, and halis.

Example 4 : Design a TM which computes the addition of two posttive integers.,

Solution: Let TM M =((0, {0, 1.4}, 5,5) computeés the addition of two positive integers m
and o Jt mesns, the computed function £ m, n) defined as follows:

fm+n(lf mnz1)
L “{e gm=n=0)
1 on the tape separates both the numbers m and n. Following values are possible form and n,
1. msn=g (#1#....1s the input),
2. m=0and ne0 { #1074 - isthe input),
3. mzoandn=90 (0714 - 18 the input), and
4. mupoand neo { #0717 # -~ is the inpuit)
* Several technigues are possible for designing of M, some are as follows :
{a) M appends { writes) m after n and erases the m from the left end.

(b) M writes 0 in place of 1 and erases one zero from the right orleftend . Thxsmposs:biem
case of n#0 Or m#0 only. Ifm=0orn=0 then 1 is replaced by #.

We nse technigues (b) given above. M is shown in below figure.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 101

Binee, 1 15 veplsced by Uin
advance, 8¢ eenag one 01k = 0
FIGURE : TM for addition of two positive integers

7.5 RECURSIVELY ENUMERABLE LANGUAGES
AlanguageLoverthealphabet 3, iscalled recursivelyermerable ifhereisa TM Milatacceptevery word
inLandeither rejects{ crashes) or loops for every word inlangusge L' the complement of L.

Accept (M) =L

Reject (M) + Loop (M) =L
When TM M is still rasming on some input (of recursively enumerable languages) we can never
toll whether M will eventually accept if we let it run for long fime or M will ran forever (in loop).

Example : Consider alangoage{a+b)*bb(a+b) ™
T for ihis Tanguageis, {b,b, R) (a,8,K)

{h. b, B} t(‘;‘\

(3a,R)

FIGURE : Turing Machine for{a+b)*bb(a+b}*
Here the inputs are of three types.
1. All words with bb = accepts (M) as soon as TM sees two consecutive bs it halts.

2, All sirings without bb but ending in b =1ejects (M). When TM sces a single b, it enters
! state2, If the string is ending with b, TM will halt at state 2 which is not aceepting state.
Hence itis rejected.
. All strings without bb ending in ‘&' or blank 'B"= loop (M) here when the TM sees lastait
enters state 1. In this state on blank symbol itloops forever.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 102

Recursive Language

Alanguagel over the alphabet 1 iscalled recursive if there is a TM M that acoepts every word
in L and rejects every word in L' L e.,

accept (My=1L
reject (M) =1

toop (M) = 4.

Example :Consideralanguageh{a+h)* Iisrepresented by TMas:

()22)

FIGURE : Turing Machine forb(a+b)*

This TM accepts all words beginning with 'b' because it enters halt state and it rejects all words
beginning with a because it remains in start state which is not accepting state.

A languape accepted by a T is said o be recursively enumerable languages. The subclass of
recursively enumberable sets (1. ¢) are those languages of this class are said to be recursive sets
or recursive language.

7.6 CHURCH'S HYPOTHESIS

According to church's hypothesis, all the fimetions which can be defined by human beings canbe
coraputed by Turing machine, The Turing machine is believed to be ultimate computing machine,

Ths church's original statement was shightly different because he gave his thesis before machines
were actually developed, He said fhat any maching that can do certain list of opesations will be
able to perform all algorithms. T™ can perform what church asked, so they are possibly the

" machines which church described.

Chutch ied both recursive fimctions and computable functions together. Every partial recusive
function is computable on TM. Computermodels such as RAM also give rise to partial recursive
functions. So they can be simulated on TM which contirms the validity of churches hypothesis.

Important of church's hypothesis is as follows .

FORMAL LANGUAGES AND AUTOMATA THEORY Page 103

. Firstwe will prove certain problems which cannot be solved using TM.

Hf churches thesis is true this implies that problems cannot be solved by any computer orany
programming languages we might every develop.

Thus in studying the capabilities and limitations of Turing machines we are indeed studying
the findarnental capabilities and limitations of any computational device we might even

I providesa general principle for algorithmic compuiation and, while net provable, gives strong
evidence that no more powerful models can be found.

7.7 COUNTER MACHINE

Counter machine has the same structure as the multistack machine, but in place of each stack is

acounter. Counters hold any non negative integer, but we can only distinguish between zero and
NOA ¥CF0 COUNters.

" Counter machines are off - line Turing machines whose storage tapes are semi - infinite, and .
whose tape alphabets contain only two symbols, Z and B (blank). Furthermore the symbol Z,
which serves as a bottom of stack marker, appears initially on the cell scanned by the tape head
and may never appear on any other cell, An infeger i can be stored by moving the tape head
cells to the right of Z., A stored number can be incremented or decremented by moving the tape
head rightor left. We can test whether anumber is zero by checking whether 7.is scanned bythe
head, but we cannot directly test whether two numbers gre equal,

(] mesoy s []

Finite
Controf

DODRENDDDE

]ZiB[Bi...lB.lglgl....

FIGURE : Counter Machine

FORMAL LANGUAGES AND AUTOMATA THEORY Page 104

¢ and § are customarily used for end markers on the input. Here Z is the non blank symbol on

each tape. An instantaneous description of a counter machine can be described by the state, the
input tape contents, the position of the input head, and the distance of the storage heads from the
symbo} 7 (shown here as d, and 4,). We call these distances the counts on the tapes, The
counter machine can only store a count an each tape and tell if that count is zero.

Power of Counter Hachines'

- Bverylanguage accepted by a counter Machine iérecmsiveiy enuneruble.
- Every language accepted by a one - counter machine is 2 CFL so aone - counter machine
is a special case of one - stack machine i. ¢, aPDA

7.8 TYPES OF TURING MACHINES

Various types of Turing Machines ae ;

i Withmultiple tapes.

fi. With one tape but multiple heads,

jil. With two dimensional tapes.

iv. Nondeterministic Turing machines.
Itis observed that computationally all these Turing Machines are equally powerful. That means
one fypecan compute the same that other can. However, the efficiency of computation may
vary.
1. Turing machine with Two - Way Infinite Tape :
This is a TM that have one finite control and one tape which extends infinitely in both directions.

AcceptiRejeut
e e i

HEREEERNENRN

tape

FIGURE : TM with infinite Tape

Ttturns out that this type of Tuting machines are as powerful as one tape Turing machines whose
tape has a leftend.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 105

. Multipie Turing Machines :

O

oz T]

tape 3] Pl

FIGURE : Multiple Turing Machines

Amultiple Turing machine consists of a finite control with k tape heads and k tapes, each tape is
infinite in both directions. Onasingle move depending on the state of the finite control and the
symbol scanned by each of the tape heads, the machine can

1. Change state.

2. Print a new symbol on each ofthe cells scanned by its tape heads.

3. Move cach ofits tape heads, independently, one celf to the leflor right orkeep it stationary.

Initially, the input appears on the first tape and the other tapes are blank.
3.- Nondeterministic Turing Machines :

A nondeferministic Turing machine is a device with a finite control and a single, one way infinite
tape. For a given state and tape symbol scanned by the 1ape head, the machine has a finiie
number of cholces for the next move. Each choice consists of a new state, a tape symbol to print,
and a direciion of head motion, Note that the non deterministic TM is not permitted to make 2
move in which the next state is selected from one choice, and the symbol printed and / or direction .
of head motion are selected from other choices. The non deterministic T™M accepls its input if any
sequence of choices of moves leads to an accepting state,

Aswith the finite automaton, the addition of nondeterminism to the Turing machine doesnot
altow the device to accept new languages.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 106

4. Wuttidimensional Turing Machines - @

1,

¥

A-dimensional T™M

FIGURE : Multidimensional Turing Machine

The multidimensional Turing machine has the usual finite control, but the tape consists of 4
k - dimensional array of cells infinite in all 2k directions, for some fixed k. Depending on the state and
symbol scanned, the device changes stato, prints & new symbol, and moves its tape head in one of 2K
directions, either positively or negatively, along one of thek axes. Tnitially, the input is 2long one axis, and
the head is at the left end of the input. At any time, only a finite sumbér of rows in any dimension
contains nonblank symbols, and these rows cach have onty a finite nunsber of nonblani symbols
5. Muitihead Turing Machines :

wput | pe {ACCSPUREIT
control

nead 1 hess n
‘ head 2

i!i!llli_lllll
wvpe

FIGURE : Multihead Turing Machine

Ak - head Turing machine has some fixed number, k, of heads. The heads aro numbered 1 through
%, and a move of the TM depends on the siaie and on the symbol scanned by each head. In one
maove, the heads may each move independently left, rightor remain stationary.

6. Off - Line Turing Machines :

|
L1 v

i
/../'
e, 18 B T

EIGURE : Off - line Turing Machine

FORMAL LANGUAGES AND AUTOMATA THEORY P
age 107

COMPUTABILITY THEORY

I S —————————— e

After going through this chapter, you should be able to understand :

. Chomsky hierarchy of Languages
Linear Beunded Automaiz and CBLs
LR {0 Grammar
Decidability of problems
HTMand PCP
P and NP problems

8.1 CHOMSKY HIERARCHY OF LANGUAGES

Chomsky has classified all grammars in four categories (type 0o type 3 Ybased on the right
hand side fornis of the productions,

{a} Type 0

These types of grammars are also known as phrase structured grammars, and REIS ofthese are
fiee from any restriction, All prammars are type () grammars,

Example : productions of types A4S — a8, S8 - 5.5 -» & are type (production.
(b} Type 1

We apply some restrictions on type 0 gramenars and these restricted gramumars are knownas
type 1 or context - sensitive grammars (CSGs). Suppose a type 0 production pd —» s

and the production & > f is restricted such that foi<| gland f=e. Then these type of
productionsisknownastype | production. Ifall productions of a grammar are aftype 1 production,
fhen grammar is known as type 1 grammar. The language generated by a context - sensitive
grammar is called context - sensitive Janguage (CSL).

FORMAL LANGUAGES AND AUTOMATA THEORY Page 108

In CSG, there is Jeft context or right context or both. For example, consider the production
A s e 8 Inthis, o isleft contextand £ is right coniext of Aand A isthe variable which is
replaced.

The production oftype § -+ e isallowed intype 1 if e isin1(G), but S should notappear on
right hand side of any production.

Example : productions § — AB,S -» &,4 — ¢ aretype | productions, but the production
oftype A -» Sz isnotallowed . Almost every language can be thought as CSL.

Note : Ifleft or right context is missing then we assume that & is the context,
{c} Type 2

We apply some more restrictions on RHS of type 1 productions and these productions are
known s Lype 2 or context - free productions. A production of the form a— £, where

a, fe(? U is known as type 2 production. A grammar whose productions are type 2
prochaction is known as type 2 or context - free grammar (CFG) and the languages generated by
this type of grammars is called context- free languages (CFL).

Example : §—>5+8, 5 8*S, §->id are type 2 productions.

(d) Type3

This is the most restricted type. Productions oftypes 4> g of 4 > aBiBa Jwhere 4, 8¢V,

and g ¢ % arc known as type 3 or regular grammar productions. A productioroftype 5 — < is
alsoaltowed, if g isin generated language.

Example : productions § > aS, 8-> ¢ aretype 3 productions,

Left - linear production : Aproductionoftype 4-» Ba iscalled left- linear production.

Right - finear production : A productionof type 4 -» qB is called right - linear production.
Aleft - linear or right - linear grammar is called regular grammar. The language generated by a
reguler grammar is known as regular language.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 109

8.2 LINEAR BOUNDED AUTOMATA

The Linear Bounded Automata (LBA) isa model which was originally developed as amodel for
actual comypaters rather than modet for computational process. A lincar bounded automaton isa
sestricted form of anon detetministic Turing machine,

Abnear bounded antomaton is a multitrack Turing machine which has only one tape andd this tape
is exactly of same length as that of input.

Fhe linear bounded automaton (LBA) accepts the string in the similar manner as that of Turing
meachifie does. For LBA halting tmeans accepting. In LBA computation is restricted to an area
bounded by length of the input. Thigis very much sinmilar to programming environment where size
of variable is bounded by its data type

<aaahlb >

ST N

marker

E

cﬂnmL
FIGURE : Linear bounded automaton

The LBA is powerful than NPDA butless powerful than Turing machine. The inputis placed on
the input tape with beginning and end markers. n the above figure the input is bounded
by < and >.

A linear bounded antomata can be formally defined as:

LBA is 7 - tuple on deterministic Turing machine with
M= {Q& E.T,8, qu Qaceom» Qwﬂ;) baving
. Two extra symbols of left end marker and right end marker which are not elementsof .
The input lies between these end markers,
The TM cannot replace < or > with anything elsc nor move the tape head leftof <or
rightof >.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 110

8.3 CONTEXT SENSITIVE LANGUAGES (CSLs)

The context sensitive languages are the Janguages which are accepted by linear bounded automata.
These type oflanguages are defined by context sensitive grammar. In this grammar more than
one terminal or non terminal symbol may appear on the lefthand side of the production rule,
Along with it, the context sensitive grammar follows following rules :

i, Thenumber of symbols on the left hand side must not exceed number of symbols on the
right hand side.

fi. Theruleoftheform 4 e isnotaflowed unless Ais a start symbol. [t does notoceur
on the right hand side of any rule.

The classic examnple of context sensitive language s L = {a" #" ¢" | » 21} . Thecontextsensitive
grammar can be writlen as :

S > aBC

S SABC
CA w AC
BA = AB
CB BC
ah aa

aB ab

bB bb

bC be

cC ~ ce

S rleS —
SABC mleS —»
aBCABC uleCA -
aBACBC) e CB -
aBABCC nle BA
aABBCC rleaA —
2aBBCC mteal -»
2abBCC tulebB -
aabbCC nlebC —»
aabbeC rulecC —
aabbee

FORMAL LANGUAGES AND AUTOMATA THEORY Page 111

Note : The language " b ¢ where 5 1 isrepresented by context sensifive grammar but it
can not be represented by context free grammar,

Every context sensitive language can be represented by LBA.

8.4 LR (k) GRAMMARS

Before going to the fopic of LR.{k) grammar, let us discuss about some concepts which will be
helptil understanding it.

[in the unit of context free grammars you have seen that to check whether a particular string is
aceepted by a particular grammar or not we try to derive that semtence using rightmost derivation
or leftmost derivation. H'that string is derived we say that itis a valid siring.

Example ;

EsE+T|T
T->T*FLF
Fsid | (E)

Suppose we want to check validity ofa string id +id * id . lisrightmost derivationis
i = E+T
E+TYF
E+T%d
B+ Fid
E+id*id
T4id *id
Fid*®id
id + id *id

T

]
=

FIGURE(a) : Rightrmost Denvation of id +id ™ id

Since this sentence is derivable using the given grammar. ltisa valid string. Here we have checked
the validity of string using process known as derivation.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 112

In reduction process we have seen that we repeat the process of substitution until we get starting
state. But some times several choices may be available forreplacement. In this case wehave to
backtrack and try some other substring . For certain grammars it is possible to carry out the
process in deterministic, { i. €., havingonly one choice at each time). LR grammars form one
such subclass of context free granmars, Depending on the number of look ahead symbolized to
determine whether a substring must be replaced by a non terminal ornot, they are classified as
LR, LR(D)....and in general LR(K) grammars,

LR{K) stands for left to right scanning of input string using rightmost derivation in reverse

order ('we say reverse order because we use reduction which is reverse of derivation) using
look ahead of k symbols.

8.4.1 LR(0) Grammar

LR(0) stands for left to right scanning of input string using rightmost derivation in reverse order
using 0 look ahead symbols.

Before defining LR(0)} grammars, let us know about few terms.

Prefix Property : Alanguage Lis said to have prefix property if whenever w in L, no proper
prefix of wis in L, By introducing marker symbol we can convertany DCFL to DCFL with prefix
property. Hence I$ = { w$|w e L} is a DCFL with prefix property whenever wis inT.

Example : Consider a language L= { cat, cart, bat, art, car } . Here, we can see that sentence
cartigin Land its one of the prefixes car is also is in L. Hence, it is not satisfying property. But
1% ={cath,cart$ bat$, art$,car$ }

Here, cart $is in L$ but its prefix cart or car ate not present in L. Similaxly no proper prefixis
present in L.$. Hence, it is satisfying prefix property.

Note : LR(0) grammar generates DCFL and every DCFL with prefix property has a LR(0}
grammar

LR items

Anitem fora CFG s a production with dot any whete in right side including beginning or end. In
case of ¢ production, suppose 4-+ ¢ 4-». isanitem.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 113

Computing Valid ltem Sets

The main idea here is fo constriet froma given prammar a deterministic finite awtoratato recognize
vizhle prefixes. We group items together into sets which give to states of DFA. The items may be
viewed as states of NFA and grouped items may be viewed as states of DFA obtained using
subset consiruction algorithm.

To compute valid set of iters we use two operations goto and closure,
Closure Operafion

k lis aset of items for a grammar G then closure (1} is the set of items constructed from Thy two
rules,

1. Initially, every item lisadded to closure ().
2. If 4 ¢ Bf isinclosore (and B - § Is production thenadd item B ¢ tol,ifitis
notalready there. We apply this rule until no more new iterns can be added to closure(T).

Examiple : Forthe grammar,

s - 8
S — cdd
4 = a

& -» § issctofoneitem instate Ithenclosure of 1is,
8 95 5
S = 4D

The first item is added using rule 1and § -» .cAd is added using rule 2. Because'.'is
followed by nonterminal § we add items having SinLHS. In § — .e4d '."isfollowed by
terminal 50 1o new item is added.

Goto Function : Itis written as goto I, X where Lis set of items and X Is grammar symbol.

If 4 -» . X isin some Hem set Tehen goto (L, X)) will beclosure of set of all item 4 — o.X 43,

FORMAL LANGUAGES AND AUTOMATA THEORY Page 114

FIGURE(a) : DFA whose States are the Sets of Valid Hems

Definition of LR{0) Grammar : We say G is an LR (0) grammat if,

1. Tsstari symbol does not appear on the right hand side of any production ans

2. TForeveryviable prefix » of G whenever 4o isa complete item valid for y , thenno
other complete itern por any item with terminal to the right of the dotis valid for 7 .

Condition 1 : For a grammar to be LR(0) it should satisfy hoth the conditions. The first

condition can be made to satisfy by all grammars by introduction ofa new preduction §'-» 8 is

known augmented grarmar.

Condition 2 : Forthe DFA shown in Figute(a), the second condition is also satisfied because

inthe ftem sets 1,, 7, and I, each comtaining a complete item, there are no other complete items

nor any other conflict.

Example : Consider the DFA given in figure(b).

FIGURE(b} : DFAfor the given Grammar

FORMAL LANGUAGES AND AUTOMATA THEORY Page 115

Each problem P is a pair consisting of a setand a question, where the question can be applied fo
ench element in the set. The set is called the domain of the problem, and its elements are called
the instances of the problem.

Example :

Dornain = { All regular languages over somealphabet £ j ,
Instance : L={w:wisawordover g endinginabbj,
Question ; 1s union of two regulat languages regular ?

851 Decidable and Undecidable Problems

A problem is said to be decidable if
1. Hslanguageis recmsive, or
2. Ithas solution

Other probiems which do not satisty the above are undecidable. We restriot the answer of
decidable problems o " YES" or "NO" . If these is some algorithm exists for the problem, then
outcome of the algorithm is either "YES" or "NO" but not both. Restricting the answers to only
"WES" ar ™NO" we may not be able to cover the whole problems, still we cancover lotof
probiems. One question here. Why we are rostricting our answers 1o only"YES" or "NO"? The
answer is very simple ; we want the answers as simple as possible,

Now, we say " Iffor aproblem, there exists an algorithm which tells that the answer is either
"VES" or "NO" then problem is decidable.”

Iffor a problem both the answers are possible ; some times "YES" and sometimes "NO",
then problem is undecidable.

8.5.2 Decidable Problems for FA, Regular Grammars and Regular Languages

Some decidable problems are mentioned below :

1. Does FA acceptregular language ?

2. Isthe power of NFA and DFA same ?

3. 7, and I, are two regular languages. Are these closed under following :
(&8 Union
(o) Concaenation
(¢} Intessection
(dy Complement

FORMAL LANGUAGES AND AUTOMATA THEORY Page 116

6. Wehave following co - theorem based on above discussion for recursive enumetable and
recursive languages.

LetL and T areiwo languages, where T the complement of L, then one of the following
wirue !

(a) Both{.and 7 arerecursivelanguages,

(b) Neither Lnor j istecursive languages.

(¢) IFL is recursive enumerable but not recursive, then 7 is not recursive enumerable and
vice versa, '

Undecidable Problems about Turing Machines

Fn fhis section, we will first discuss about halting problem in general and then about TM.
Halting Problem (HP)
The halfing problem is a decision problem which is informally stated as follows

"Given a description of an algorithm and a deseription of ifs initial arguments, determine whether
the algorithm, when execuied with these arguments, ever halts. The alternative is thata given
algorithm runs forever without halting,”

Alan Turing proved in 1936 that there is no general method or algorithm which can solve the
halting problem for all possible inputs, An algorithm may contain loops which may be infinite or
finite in length depending on the inputand behaviour of the algorithm.. The amount of work dong
in analgorithm usually depends on the input size. Algorithms may consist of various nuamber of
Ioops, nested or insequence, The HP asks the question : :

Given a program and an Input o the program, determine if’ the program willeventually stop when
itis giventhatinput 7

One thing we can do here fo find the solution of HP. Let the program run with the given input and
if the program stops and we conclude that problem is solved. But. if'the program doesn't stop in
areasonable amount of time, we can not conclude that it won't stop. The questionis: " howlong
we can wait 7 . The waiting time may be long enough to exhaust whole life. So, we can not
take it as easier as it seems to be, We want specific answer, either "YES" or "NO", and hence
some algorithmto decide the answer.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 117

Now, we analyse the following :
1. ¥ outputs "YES™ and says that Q halts then Q itself would loop (that's how we
constructed it),
2. IEH outputs "NO” and says that Q loops then Q outputs "YES" and will halts.
Since , in either case H gives the wrong answer for Q. Therefore, H cannot work inall cases
and hence can't answer right for all the inputs. This contradicts our assumption made earlier for
HP. Hence, HP isundecidable.

Theorem : HP of TM isundecidable. _
Proof : HP of M means to decide whether or not a TM halts for some input w. We can prove
this following the simHlar steps discussed in sbove theorem.

8.6 UNIVERSAL TURING MACHINE

The Chsch - Turing thesis conjectured that anything that can be done on any existing digital
computer can also be done by a TM. To prove this confecture. A. M. “Turing was able to construct
asingle TM which is the theoretical analogue of a genersd purpose digital computer. Thismachine
is called a Universal Turing Machine(UTM). He showed that the UTM is capabile of initiating
the operation of any other TM, that is, it is a reprogrammable TM. We can definsthis machine in
mare formal way as follows :

Definition : A Universal Turing Machine{ denoted as JTM)isa T™M {hat can take asinput an
arbitrary TM 7, with an arbitrary input for 7, and then perform the execution of T, onisinput.

What Turing thus showed that a single TM can acts like & general purpose computer that stores
aprogram and its data in memory and then executes the program. We can describe UTM asa 3
-tape TM where the description of TM, 7, snd its input string x e 47 are stored initially on the
firsttape, ¢,. The second tape, 1, used to hold the simulated tape of T, , using the same format
asused for describing the TM, 7, . The third tape,, £, holds the state of T,

. I ;
DN

Preszipticin of T with i inpul x

-

Tape evmetand Ta

FORMAL LANGUAGES AND AUTOMATA THEORY Page 118

Now, suppose that a Taring machine, T, , is consisting of a finite number of configurations,
denoted by, ¢, ¢s G ¢, and let &, G, & - €, represent the encoding of them. Then, we
can define the encoding of 7, as follows::

*E R ¥ o
Here, * and # are used only as separators, and cannot appear elsewhere. We use a pair of ¥'sto
enclose the encoding of cach configuration of TM, T,

The case where 8(s,) is undefined can be encoded as follows :

#EOE OB 4
where the symbols & , ¢ and % stand for the encoding of symbols, s . aand B{Blank character),
respectively.

Waorking of UTM

(siven a description of 2 TM, T, and its inputs representation on the UTM tape, 4 and the
starting symbol ontape , £, the UTM starts executing the gquintuples of the encoded TM as
follows:
1. TheUTM gets the currentstate from tape, ¢, and the current inpui symbol from: tape £, .
2. then, it matches the current state - symbol pairto the state symbol pairs in the program listed
ontape, ¢ -
ifno match oceurs, the UTM halts, otherwise it copies the next staie into the current state
cell of tape, 1,, and perform the corresponding write and move operations on tape, £, .
4. ifthe crarent state on tape, #; is the halt state, then the TITM halts, otherwise the UTM goes
~ back tostep 2,

8.7 POST'S CORRESPONDENCE PROBLEM (PCP)

Post's correspondence problem is a combinatorial problem formulated by Ernil Post in 1946.
This problem has many applications in the field theory of formal languages.

Definition :

A cotrespondence system P is a finite set of ordered pairs of nonempty strings over some alphabet.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 119

Hete, s =b, w4, =a, wy=abe, pyy=ca, vy=ab, vy=c.

Wehaveasolution w=wu, u, = by v =obea .
8.8 TURING REDUCIBILITY

Reduction isa technique in which if a problem Ais reduced to problem B then any solution of B
solves A. In general, if we have an algorithm to convert some instance of problem A to some
instance of problem B that have the same answer then it is called Areduces to B.

FIGURE: Reduction

Definition : Let Aand B be the two sets such that 4, B ¢ & of natural numbers. Then A is
Turing reducible to B and denotedas 45, B,

Tf there is an oracle machine that computes the characteristic fimetion of A when it is executed
with oracle machine for B.

This is also called as Ais B ~ recursive and B - computable. The oracle machine is an abstract
machine used to study decision problem. it is also calted as Foring machine with black box.
We say that Ais Turing equivalentto Band write 4=, Bif 45, Band Bs; 4.

Properties :

1. Everysetis Turing equivalent to its complement.

2. Bvery computable set is Turing equivalent to every other computable set.
3 Ifd<g, Band B<p Cthen A<, B

8.3 DEFINITION OF P AND NP PROBLEMS

A problem is said to be solvable if it has an algorithm to solve it. Problems can be categorized
into two groups depending on time taken for their execution.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 120

1. The problems whose sotution times are bounded by polynomials of small degree.
Fxample: bubble sort algorithm obtains n sumbers in sorted order in polynomial time

P(n) = n® —2n+ | where nisthe length of input. Hence. it comes undet this group.

Second group is made up of problems whose best known algorithm are non polynomial
exarnple, ravelling salestnan problem has complexity of O(7 2"y which isexponential.
Hence, it comes under this group.

A problem can be solved if there is an algorithm to solve the given problem and time required is
expressed as a polynomial p(n) , n being length of input string. The problems of first group are of
this kind, .

The problems of second group require large amount of time o execute and even require moderate
size so these problems are difficult to solve. Hence, problems of first kind are tractable or easy
and problems of second kind are infractable or hard.

8.9.1 P-Problem

Pstands for deterministic polynomial time. A deterministic machine at cach time executes an
instruction. Depending on instruction, it then goes to next state which is unique.

Hence, time complexity of deterministic TM is the maximum pumber of moves made by Mis
processing any input string of lengthn, taken over all inputs of tengthn,

Definition ; Alanguage L. is said tobe in class P if there exists a(deterministic) TMMsuch
that M is of time complexity P(n) for some polynomial P and M accepts L.

Class P consists of those problem that are solveble in polynosmial time by DTM.

8.9.2 NP -Problem

NP stands for nondeterministic polynomial fime.

The class NP consisis of those problesms that are verifiable in polynomial time. What we mean
here isthat if we are given certificate of asolution then we can verify that the certificate is correct
in polynomial time in size of input problem.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 121

8.10 NP - COMPLETE AND NP - HARD PROBLEMS

A problem $ is said to be NP- Complete problemif it satisfies the following two conditions,
1, SeNP,ad

2. Forevery other problems 5, e NP for some i=1,2, n, there is polynomial - time

sransformationffom S, fo S 1.¢ every problemminNP class polynomial time reducibietosS.
We conclude one thing here thatif 8, is NP - complete then Sis also NP - Complete.

Asaconsequence, if we could find a polynomial timealgorithm for $, then we can solve all NP
problems i polynomial time, because all problems in NP class are polynomial - time reducible to
each other.

"A problem P is said to be NP - Hard if it satisfies the second condition as NP - Complete, but
not necessarily the first condition.”, '

The notion of NP - hardness plays an important role in the discussion about the relationship
between the complexity classes P and NP Itis also ofien used to define the complexity class NP
- Complete which is the ntersection of NP and NP - Hard. Consequently, the class NF - Hard
can be understood as the class of problems that ave NP - complete or harder.

Example : AnNP- Hard problem s the decision problem SUBSET - SUM which isas foflows.

" Given a set of infegers, do any non empty subset of them add up to zeto? This is a yes /no
question, and happens to be NP - complete ™.

There are also decision problems that are NP - Hard but not NP - Complete, for example, the
halting problem of Turing machine, It is casy to prove that the halting problem is NP - Hard but
not NP - Conplete. It s also easy o see that balting problem is not in NP since all problems in
NP are decidable but the halting problem is not voilating the condition first given for NP -
complete langnages). -

in Complexity theory, the NP - complete problems are the hardest problems in NP class, inthe
sense th they are the ones most likely not to be in P class, The ressonis that if we could finda
way tosolve any NP~ complete problem quickly, then you could use that algorithm to solveall
NP problems quickly.

Atpresenttime, all known algorithms for NP - complete problens require fime whichis exponential
in the input size. Tt is unknown whether thers are any faster algorithms fos these are not.

FORMAL LANGUAGES AND AUTOMATA THEORY Page 122

FORMAL LANGUAGES AND AUTOMATA THEORY Page 123

	UNIT-4

